GM1 Gangliosidosis-A Mini-Review

Elena-Raluca Nicoli, Ida Annunziata, Alessandra d'Azzo, Frances M Platt, Cynthia J Tifft, Karolina M Stepien, Elena-Raluca Nicoli, Ida Annunziata, Alessandra d'Azzo, Frances M Platt, Cynthia J Tifft, Karolina M Stepien

Abstract

GM1 gangliosidosis is a progressive, neurosomatic, lysosomal storage disorder caused by mutations in the GLB1 gene encoding the enzyme β-galactosidase. Absent or reduced β-galactosidase activity leads to the accumulation of β-linked galactose-containing glycoconjugates including the glycosphingolipid (GSL) GM1-ganglioside in neuronal tissue. GM1-gangliosidosis is classified into three forms [Type I (infantile), Type II (late-infantile and juvenile), and Type III (adult)], based on the age of onset of clinical symptoms, although the disorder is really a continuum that correlates only partially with the levels of residual enzyme activity. Severe neurocognitive decline is a feature of Type I and II disease and is associated with premature mortality. Most of the disease-causing β-galactosidase mutations reported in the literature are clustered in exons 2, 6, 15, and 16 of the GLB1 gene. So far 261 pathogenic variants have been described, missense/nonsense mutations being the most prevalent. There are five mouse models of GM1-gangliosidosis reported in the literature generated using different targeting strategies of the Glb1 murine locus. Individual models differ in terms of age of onset of the clinical, biochemical, and pathological signs and symptoms, and overall lifespan. However, they do share the major abnormalities and neurological symptoms that are characteristic of the most severe forms of GM1-gangliosidosis. These mouse models have been used to study pathogenic mechanisms, to identify biomarkers, and to evaluate therapeutic strategies. Three GLB1 gene therapy trials are currently recruiting Type I and Type II patients (NCT04273269, NCT03952637, and NCT04713475) and Type II and Type III patients are being recruited for a trial utilizing the glucosylceramide synthase inhibitor, venglustat (NCT04221451).

Keywords: GM1 gangliosidosis; beta galactosidase; gene therapy; glycoconjugates metabolism; mouse model.

Conflict of interest statement

Ad’A holds the Jewelers for Children Endowed Chair in Genetics and Gene Therapy. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Nicoli, Annunziata, d’Azzo, Platt, Tifft and Stepien.

Figures

FIGURE 1
FIGURE 1
Pathogenesis and clinical manifestations. Panel 1: human β-GAL is composed of a catalytic TIM barrel domain followed by β-domain 1 and β-domain 2 (Ohto et al., 2012). Mutations in the GLB1 gene lead to impaired enzyme activity, which results in the progressive accumulation of complex gangliosides, specifically GM1. This, in turn, initiates a series of pathogenic events that ultimately lead to neurodegeneration (Kolter, 2012; Annunziata et al., 2018). Panel 2: through alternative splicing, the GLB1 gene gives rise to two transcripts, one encoding the hydrolytic enzyme β-galactosidase and the other the elastin binding protein (EBP). The primary role of EBP is to chaperone the deposition of elastin fibers in the extracellular matrix (ECM). β-galactosidase (GLB1) and EBP are found in complex with PPCA and NEU1 in lysosomes and the plasma membrane (PM), respectively (Caciotti et al., 2005; Bonten et al., 2014). Panel 3: although GM1 gangliosidosis is a disease continuum it can be loosely divided into 3 types, with Type II having 2 subtypes. The common use of a synthetic fluorogenic substrate to measure β-GAL activity makes it difficult to establish an accurate correlation between residual enzyme activity and clinical outcome. This may also be complicated by the regulatory and post posttranslational mechanisms that influence GM1-ganglioside catabolism and may vary among patients (Breiden and Sandhoff, 2019). The main symptoms of the disease commonly found in each type/subtype are summarized.
FIGURE 2
FIGURE 2
Genotypes in GM1 gangliosidosis. Schematic representation of 261 GLB1 variants with a reported phenotype of GM1-gangliosidosis and/or Morquio B registered in the database HGMD (2021) updated with the novel variants from Tebani et al. (2021). The GLB1 gene is located on the short arm of chromosome 3 (3p21.33). GM1 gangliosidosis and Morquio B disease result from biallelic mutations in GLB1 gene. Mutations affecting the catalytical site of the β-GAL enzyme may reduce or eliminate the degradation of GM1 substrate. GLB1 cDNA sequence NM_000404.4; Ref SeqGene NG_009005.1; 194 Missense/Nonsense (dark blue), 20 Splicing substitutions (dark green), 25 small deletions (pink), 17 small insertion/duplications (light blue), 2 small indels (orange), 1 gross deletion (purple), 2 gross insertion/duplications (light green). Bold text represents GM1 gangliosidosis and/or Morquio B reported phenotypes. A summary of the 261 reported variants with a phenotype of GM1 gangliosidosis and/or Morquio B disease can be found at GLB1 (HGMD, 2021; Tebani et al., 2021). The main domains of the protein are shown above the exons. For a full description on the clinical pathogenicity of each variant the database ClinVar (Landrum et al., 2018) provides information about genomic variation and its relationship to human health at GLB1 (ClinVar, 2021).

References

    1. Abumansour I. S., Yuskiv N., Paschke E., Stockler-Ipsiroglu S. (2020). Morquio-B disease: clinical and genetic characteristics of a distinct GLB1-related dysostosis multiplex. JIMD Rep. 51 30–44. 10.1002/jmd2.12065
    1. Annunziata I., Sano R., d’Azzo A. (2018). Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis. 9:328. 10.1038/s41419-017-0025-4
    1. Arash-Kaps L., Komlosi K., Seegraber M., Diederich S., Paschke E., Amraoui Y., et al. (2019). The Clinical and Molecular Spectrum of GM1 Gangliosidosis. J. Pediatr. 215 152–157e153. 10.1016/j.jpeds.2019.08.016
    1. Baek R. C., Broekman M. L., Leroy S. G., Tierney L. A., Sandberg M. A., d’Azzo A., et al. (2010). AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS One 5:e13468. 10.1371/journal.pone.0013468
    1. Begley D. J., Pontikis C. C., Scarpa M. (2008). Lysosomal storage diseases and the blood-brain barrier. Curr. Pharm. Des. 14 1566–1580. 10.2174/138161208784705504
    1. Bonten E. J., Annunziata I., d’Azzo A. (2014). Lysosomal multienzyme complex: pros and cons of working together. Cell. Mol. Life Sci. 71 2017–2032. 10.1007/s00018-013-1538-3
    1. Breiden B., Sandhoff K. (2019). Lysosomal glycosphingolipid storage diseases. Annu. Rev. Biochem. 88 461–485. 10.1146/annurev-biochem-013118-111518
    1. Broekman M. L., Baek R. C., Comer L. A., Fernandez J. L., Seyfried T. N., Sena-Esteves M. (2007). Complete correction of enzymatic deficiency and neurochemistry in the GM1-gangliosidosis mouse brain by neonatal adeno-associated virus-mediated gene delivery. Mol. Ther. 15 30–37. 10.1038/sj.mt.6300004
    1. Broekman M. L., Tierney L. A., Benn C., Chawla P., Cha J. H., Sena-Esteves M. (2009). Mechanisms of distribution of mouse beta-galactosidase in the adult GM1-gangliosidosis brain. Gene Ther. 16 303–308. 10.1038/gt.2008.149
    1. Bruggink C., Poorthuis B. J., Deelder A. M., Wuhrer M. (2012). Analysis of urinary oligosaccharides in lysosomal storage disorders by capillary high-performance anion-exchange chromatography-mass spectrometry. Anal. Bioanal. Chem. 403 1671–1683. 10.1007/s00216-012-5968-9
    1. Brunetti-Pierri N., Scaglia F. (2008). GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol. Genet. Metab. 94 391–396. 10.1016/j.ymgme.2008.04.012
    1. Caciotti A., Donati M. A., Boneh A., d’Azzo A., Federico A., Parini R., et al. (2005). Role of beta-galactosidase and elastin binding protein in lysosomal and nonlysosomal complexes of patients with GM1-gangliosidosis. Hum. Mutat. 25 285–292. 10.1002/humu.20147
    1. Caciotti A., Garman S. C., Rivera-Colon Y., Procopio E., Catarzi S., Ferri L., et al. (2011). GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings. Biochim. Biophys. Acta 1812 782–790. 10.1016/j.bbadis.2011.03.018
    1. Chen J. C., Luu A. R., Wise N., Angelis R., Agrawal V., Mangini L., et al. (2020). Intracerebroventricular enzyme replacement therapy with beta-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice. J. Biol. Chem. 295 13532–13555. 10.1074/jbc.RA119.009811
    1. ClinVar (2021). Xxxxxx. Available online at: (accessed June 25, 2021).
    1. Condori J., Acosta W., Ayala J., Katta V., Flory A., Martin R., et al. (2016). Enzyme replacement for GM1-gangliosidosis: uptake, lysosomal activation, and cellular disease correction using a novel beta-galactosidase:RTB lectin fusion. Mol. Genet. Metab. 117 199–209. 10.1016/j.ymgme.2015.12.002
    1. Cox T., Lachmann R., Hollak C., Aerts J., van Weely S., Hrebicek M., et al. (2000). Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355 1481–1485. 10.1016/S0140-6736(00)02161-9
    1. Deodato F., Procopio E., Rampazzo A., Taurisano R., Donati M. A., Dionisi-Vici C., et al. (2017). The treatment of juvenile/adult GM1-gangliosidosis with Miglustat may reverse disease progression. Metab. Brain Dis. 32 1529–1536. 10.1007/s11011-017-0044-y
    1. Eikelberg D., Lehmbecker A., Brogden G., Tongtako W., Hahn K., Habierski A., et al. (2020). Axonopathy and reduction of membrane resistance: key features in a new murine model of human GM1-gangliosidosis. J. Clin. Med. 9:1004. 10.3390/jcm9041004
    1. Elliot-Smith E., Speak A. O., Lloyd-Evans E., Smith D. A., van der Spoel A. C., Jeyakumar M., et al. (2008). Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol. Genet. Metab. 94 204–211. 10.1016/j.ymgme.2008.02.005
    1. Fantur K., Hofer D., Schitter G., Steiner A. J., Pabst B. M., Wrodnigg T. M., et al. (2010). DLHex-DGJ, a novel derivative of 1-deoxygalactonojirimycin with pharmacological chaperone activity in human G(M1)-gangliosidosis fibroblasts. Mol. Genet. Metab. 100 262–268. 10.1016/j.ymgme.2010.03.019
    1. Ferreira C. R., Gahl W. A. (2017). Lysosomal storage diseases. Transl. Sci. Rare Dis. 2 1–71. 10.3233/TRD-160005
    1. Ferreira C. R., Regier D. S., Yoon R., Pan K. S., Johnston J. M., Yang S., et al. (2020). The skeletal phenotype of intermediate GM1 gangliosidosis: clinical, radiographic and densitometric features, and implications for clinical monitoring and intervention. Bone 131:115142. 10.1016/j.bone.2019.115142
    1. Ficicioglu C. (2008). Review of miglustat for clinical management in Gaucher disease type 1. Ther. Clin. Risk Manag. 4 425–431. 10.2147/tcrm.s6865
    1. Fischetto R., Palladino V., Mancardi M. M., Giacomini T., Palladino S., Gaeta A., et al. (2020). Substrate reduction therapy with Miglustat in pediatric patients with GM1 type 2 gangliosidosis delays neurological involvement: a multicenter experience. Mol. Genet. Genomic Med. 8:e1371. 10.1002/mgg3.1371
    1. Front S., Biela-Banas A., Burda P., Ballhausen D., Higaki K., Caciotti A., et al. (2017). (5aR)-5a-C-Pentyl-4-epi-isofagomine: a powerful inhibitor of lysosomal beta-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. Eur. J. Med. Chem. 126 160–170. 10.1016/j.ejmech.2016.09.095
    1. Gorelik A., Illes K., Hasan S. M. N., Nagar B., Mazhab-Jafari M. T. (2021). Structure of the murine lysosomal multienzyme complex core. Sci. Adv. 7:eabf4155. 10.1126/sciadv.abf4155
    1. Gray-Edwards H. L., Jiang X., Randle A. N., Taylor A. R., Voss T. L., Johnson A. K., et al. (2017a). Lipidomic evaluation of feline neurologic disease after AAV gene therapy. Mol. Ther. Methods Clin. Dev. 6 135–142. 10.1016/j.omtm.2017.07.005
    1. Gray-Edwards H. L., Maguire A. S., Salibi N., Ellis L. E., Voss T. L., Diffie E. B., et al. (2020). 7T MRI predicts amelioration of neurodegeneration in the brain after AAV gene therapy. Mol. Ther. Methods Clin. Dev. 17 258–270. 10.1016/j.omtm.2019.11.023
    1. Gray-Edwards H. L., Regier D. S., Shirley J. L., Randle A. N., Salibi N., Thomas S. E., et al. (2017b). Novel biomarkers of human GM1 gangliosidosis reflect the clinical efficacy of gene therapy in a feline model. Mol. Ther. 25 892–903. 10.1016/j.ymthe.2017.01.009
    1. Gupta M., Pandey H., Sivakumar S. (2017). Intracellular delivery of beta-galactosidase enzyme using arginase-responsive dextran sulfate/Poly-l-arginine capsule for lysosomal storage disorder. ACS Omega 2 9002–9012. 10.1021/acsomega.7b01230
    1. Hahn C. N., del Pilar Martin M., Schroder M., Vanier M. T., Hara Y., Suzuki K., et al. (1997). Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum. Mol. Genet. 6 205–211. 10.1093/hmg/6.2.205
    1. HGMD (2021). The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. Available online at: . (Accessed June 25, 2021)
    1. Hinderer C., Nosratbakhsh B., Katz N., Wilson J. M. (2020). A single injection of an optimized adeno-associated viral vector into cerebrospinal fluid corrects neurological disease in a murine model of GM1 gangliosidosis. Hum. Gene. Ther. 31, 1169–1177. 10.1089/hum.2018.206
    1. Holmes E. W., O’Brien J. S. (1978). Hepatic storage of oligosaccharides and glycolipids in a cat affected with GM1 gangliosidosis. Biochem. J. 175 945–953. 10.1042/bj1750945
    1. Inui K., Namba R., Ihara Y., Nobukuni K., Taniike M., Midorikawa M., et al. (1990). A case of chronic GM1 gangliosidosis presenting as dystonia: clinical and biochemical studies. J. Neurol. 237 491–493. 10.1007/BF00314770
    1. Iwasaki H., Watanabe H., Iida M., Ogawa S., Tabe M., Higaki K., et al. (2006). Fibroblast screening for chaperone therapy in beta-galactosidosis. Brain Dev. 28 482–486. 10.1016/j.braindev.2006.02.002
    1. Iyer N. S., Gimovsky A. C., Ferreira C. R., Critchlow E. J., Al-Kouatly H. B. (2021). Lysosomal storage disorders as an etiology of nonimmune hydrops fetalis: a systematic review. Clin. Genet. 212 281–290. 10.1111/cge.14005
    1. Jarnes Utz J. R., Kim S., King K., Ziegler R., Schema L., Redtree E. S., et al. (2017). Infantile gangliosidoses: mapping a timeline of clinical changes. Mol. Genet. Metab. 121 170–179. 10.1016/j.ymgme.2017.04.011
    1. Jatzkewitz H., Sandhoff K. (1963). On a biochemically special form of infantile amaturotic idiocy. Biochim. Biophys. Acta 70 354–356. 10.1016/0006-3002(63)90764-9
    1. Jeyakumar M., Butters T. D., Dwek R. A., Platt F. M. (2002). Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol. Appl. Neurobiol. 28 343–357. 10.1046/j.1365-2990.2002.00422.x
    1. Jeyakumar M., Thomas R., Elliot-Smith E., Smith D. A., van der Spoel A. C., d’Azzo A., et al. (2003). Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126(Pt 4) 974–987. 10.1093/brain/awg089
    1. Karimzadeh P., Naderi S., Modarresi F., Dastsooz H., Nemati H., Farokhashtiani T., et al. (2017). Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene. BMC Med. Genet. 18:73. 10.1186/s12881-017-0417-4
    1. Kasperzyk J. L., d’Azzo A., Platt F. M., Alroy J., Seyfried T. N. (2005). Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J. Lipid Res. 46 744–751. 10.1194/jlr.M400411-JLR200
    1. Kasperzyk J. L., El-Abbadi M. M., Hauser E. C., D’Azzo A., Platt F. M., Seyfried T. N. (2004). N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J. Neurochem. 89 645–653. 10.1046/j.1471-4159.2004.02381.x
    1. Kelly J. M., Gross A. L., Martin D. R., Byrne M. E. (2017). Polyethylene glycol-b-poly(lactic acid) polymersomes as vehicles for enzyme replacement therapy. Nanomedicine (Lond.) 12 2591–2606. 10.2217/nnm-2017-0221
    1. Kishnani P., Tarnopolsky M., Roberts M., Sivakumar K., Dasouki M., Dimachkie M. M., et al. (2017). Duvoglustat HCl increases systemic and tissue exposure of active acid alpha-glucosidase in pompe patients co-administered with alglucosidase alpha. Mol. Ther. 25 1199–1208. 10.1016/j.ymthe.2017.02.017
    1. Kolter T. (2012). Ganglioside biochemistry. ISRN Biochem. 2012:506160. 10.5402/2012/506160
    1. Landrum M. J., Lee J. M., Benson M., Brown G. R., Chao C., Chitipiralla S., et al. (2018). ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46 D1062–D1067. 10.1093/nar/gkx1153
    1. Lang F. M., Korner P., Harnett M., Karunakara A., Tifft C. J. (2020). The natural history of Type 1 infantile GM1 gangliosidosis: a literature-based meta-analysis. Mol. Genet. Metab. 129 228–235. 10.1016/j.ymgme.2019.12.012
    1. Latour Y. L., Yoon R., Thomas S. E., Grant C., Li C., Sena-Esteves M., et al. (2019). Human GLB1 knockout cerebral organoids: a model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Mol. Genet. Metab. Rep. 21:100513. 10.1016/j.ymgmr.2019.100513
    1. Lawrence R., Van Vleet J. L., Mangini L., Harris A., Martin N., Clark W., et al. (2019). Characterization of glycan substrates accumulating in GM1 Gangliosidosis. Mol. Genet. Metab. Rep. 21:100524. 10.1016/j.ymgmr.2019.100524
    1. Ledeen R. W., Wu G. (2015). The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem. Sci. 40 407–418. 10.1016/j.tibs.2015.04.005
    1. Leinekugel P., Michel S., Conzelmann E., Sandhoff K. (1992). Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum. Genet. 88 513–523. 10.1007/BF00219337
    1. Liu S., Feng Y., Huang Y., Jiang X., Tang C., Tang F., et al. (2021). A GM1 gangliosidosis mutant mouse model exhibits activated microglia and disturbed autophagy. Exp. Biol. Med. (Maywood) 246 1330–1341. 10.1177/1535370221993052
    1. Matsuda J., Suzuki O., Oshima A., Ogura A., Naiki M., Suzuki Y. (1997a). Neurological manifestations of knockout mice with beta-galactosidase deficiency. Brain Dev. 19 19–20.
    1. Matsuda J., Suzuki O., Oshima A., Ogura A., Noguchi Y., Yamamoto Y., et al. (1997b). Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconj. J. 14 729–736.
    1. Matsuda J., Suzuki O., Oshima A., Yamamoto Y., Noguchi A., Takimoto K., et al. (2003). Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc. Natl. Acad. Sci. U.S.A. 100 15912–15917. 10.1073/pnas.2536657100
    1. Mayer F. Q., Pereira Fdos S., Fensom A. H., Slade C., Matte U., Giugliani R. (2009). New GLB1 mutation in siblings with Morquio type B disease presenting with mental regression. Mol. Genet. Metab. 96:148. 10.1016/j.ymgme.2008.11.159
    1. McCurdy V. J., Johnson A. K., Gray-Edwards H. L., Randle A. N., Brunson B. L., Morrison N. E., et al. (2014). Sustained normalization of neurological disease after intracranial gene therapy in a feline model. Sci. Transl. Med. 6:231ra248. 10.1126/scitranslmed.3007733
    1. Morita M., Saito S., Ikeda K., Ohno K., Sugawara K., Suzuki T., et al. (2009). Structural bases of GM1 gangliosidosis and Morquio B disease. J. Hum. Genet. 54 510–515. 10.1038/jhg.2009.70
    1. Ohto U., Usui K., Ochi T., Yuki K., Satow Y., Shimizu T. (2012). Crystal structure of human beta-galactosidase: structural basis of Gm1 gangliosidosis and morquio B diseases. J. Biol. Chem. 287 1801–1812. 10.1074/jbc.M111.293795
    1. Parenti G. (2009). Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med. 1 268–279. 10.1002/emmm.200900036
    1. Parenti G., Andria G., Valenzano K. J. (2015). Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol. Ther. 23 1138–1148. 10.1038/mt.2015.62
    1. Patterson M. C., Vecchio D., Prady H., Abel L., Wraith J. E. (2007). Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 6 765–772. 10.1016/S1474-4422(07)70194-1
    1. Peterschmitt M. J., Crawford N. P. S., Gaemers S. J. M., Ji A. J., Sharma J., Pham T. T. (2021). Pharmacokinetics, pharmacodynamics, safety, and tolerability of oral venglustat in healthy volunteers. Clin. Pharmacol. Drug Dev. 10 86–98. 10.1002/cpdd.865
    1. Piraud M., Pettazzoni M., Menegaut L., Caillaud C., Nadjar Y., Vianey-Saban C., et al. (2017). Development of a new tandem mass spectrometry method for urine and amniotic fluid screening of oligosaccharidoses. Rapid Commun. Mass Spectrom. 31 951–963. 10.1002/rcm.7860
    1. Platt F. M., d’Azzo A., Davidson B. L., Neufeld E. F., Tifft C. J. (2018). Lysosomal storage diseases. Nat. Rev. Dis. Primers 4:27. 10.1038/s41572-018-0025-4
    1. Platt F. M., Jeyakumar M., Andersson U., Priestman D. A., Dwek R. A., Butters T. D., et al. (2001). Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J. Inh Metab. Dis. 24 275–290. 10.1023/a:1010335505357
    1. Platt F. M., Neises G. R., Dwek R. A., Butters T. D. (1994). N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269 8362–8365.
    1. Przybilla M. J., Ou L., Tabaran A. F., Jiang X., Sidhu R., Kell P. J., et al. (2019). Comprehensive behavioral and biochemical outcomes of novel murine models of GM1-gangliosidosis and Morquio syndrome type B. Mol. Genet. Metab. 126 139–150. 10.1016/j.ymgme.2018.11.002
    1. Przybilla M. J., Stewart C., Carlson T. W., Ou L., Koniar B. L., Sidhu R., et al. (2021). Examination of a blood-brain barrier targeting beta-galactosidase-monoclonal antibody fusion protein in a murine model of GM1-gangliosidosis. Mol. Genet. Metab. Rep. 27:100748. 10.1016/j.ymgmr.2021.100748
    1. Regier D. S., Kwon H. J., Johnston J., Golas G., Yang S., Wiggs E., et al. (2016). MRI/MRS as a surrogate marker for clinical progression in GM1 gangliosidosis. Am. J. Med. Genet. A 170 634–644. 10.1002/ajmg.a.37468
    1. Regier D. S., Tifft C. J., Rothermel C. E. (1993). “GLB1-related disorders,” in GeneReviews, eds Adam M. P., Ardinger H. H., Pagon R. A., Wallace S. E., Bean L. J. H., Mirzaa G., et al. (Seattle, WA: University of Washington; ).
    1. Reynolds G. C., Baker H. J., Reynolds R. H. (1978). Enzyme replacement using liposome carriers in feline Gm1 gangliosidosis fibroblasts. Nature 275 754–755. 10.1038/275754a0
    1. Rha A. K., Maguire A. S., Martin D. R. (2021). GM1 gangliosidosis: mechanisms and management. Appl. Clin. Genet. 14 209–233. 10.2147/TACG.S206076
    1. Samoylova T. I., Martin D. R., Morrison N. E., Hwang M., Cochran A. M., Samoylov A. M., et al. (2008). Generation and characterization of recombinant feline beta-galactosidase for preclinical enzyme replacement therapy studies in GM1 gangliosidosis. Metab. Brain Dis. 23 161–173. 10.1007/s11011-008-9086-5
    1. Sano R., Annunziata I., Patterson A., Moshiach S., Gomero E., Opferman J., et al. (2009). GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol. Cell 36 500–511. 10.1016/j.molcel.2009.10.021
    1. Sano R., Tessitore A., Ingrassia A., d’Azzo A. (2005). Chemokine-induced recruitment of genetically modified bone marrow cellgliosidosis mice corrects neuronal pathology. Blood 106 2259–2268. 10.1182/blood-2005-03-1189
    1. Sawada T., Tanaka A., Higaki K., Takamura A., Nanba E., Seto T., et al. (2009). Intracerebral cell transplantation therapy for murine GM1 gangliosidosis. Brain Dev. 31 717–724. 10.1016/j.braindev.2008.11.004
    1. Severini M. H., Silva C. D., Sopelsa A., Coelho J. C., Giugliani R. (1999). High frequency of type 1 GM1 gangliosidosis in southern Brazil. Clin. Genet. 56 168–169. 10.1034/j.1399-0004.1999.560215.x
    1. Shield J. P., Stone J., Steward C. G. (2005). Bone marrow transplantation correcting beta-galactosidase activity does not influence neurological outcome in juvenile GM1-gangliosidosis. J. Inherit. Metab. Dis. 28 797–798. 10.1007/s10545-005-0089-7
    1. Sinigerska I., Chandler D., Vaghjiani V., Hassanova I., Gooding R., Morrone A., et al. (2006). Founder mutation causing infantile GM1-gangliosidosis in the Gypsy population. Mol. Genet. Metab. 88 93–95. 10.1016/j.ymgme.2005.12.009
    1. Stone D. L., Sidransky E. (1999). Hydrops fetalis: lysosomal storage disorders in extremis. Adv. Pediatr. 46 409–440.
    1. Suzuki Y. (2006). Beta-galactosidase deficiency: an approach to chaperone therapy. J. Inherit. Metab. Dis. 29 471–476. 10.1007/s10545-006-0287-y
    1. Suzuki Y. (2008). Chemical chaperone therapy for GM1-gangliosidosis. Cell. Mol. Life Sci. 65 351–353. 10.1007/s00018-008-7470-2
    1. Suzuki Y. (2014). Emerging novel concept of chaperone therapies for protein misfolding diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 90 145–162. 10.2183/pjab.90.145
    1. Suzuki Y., Ichinomiya S., Kurosawa M., Matsuda J., Ogawa S., Iida M., et al. (2012). Therapeutic chaperone effect of N-octyl 4-epi-beta-valienamine on murine G(M1)-gangliosidosis. Mol. Genet. Metab. 106 92–98. 10.1016/j.ymgme.2012.02.012
    1. Suzuki Y., Ichinomiya S., Kurosawa M., Ohkubo M., Watanabe H., Iwasaki H., et al. (2007). Chemical chaperone therapy: clinical effect in murine G(M1)-gangliosidosis. Ann. Neurol. 62 671–675. 10.1002/ana.21284
    1. Suzuki Y., Oshima A., Nanba E. (2001). “β-Galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and Morquio B disease,” in The Metabolic and Molecular Bases of Inherited Disease, eds Shriver C. R., Beaudet A. L., Sly W. S., Valle D. (New York, NY: McGraw Hill; ), 3775–3809.
    1. Takai T., Higaki K., Aguilar-Moncayo M., Mena-Barragan T., Hirano Y., Yura K., et al. (2013). A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis. Mol. Ther. 21 526–532. 10.1038/mt.2012.263
    1. Takaura N., Yagi T., Maeda M., Nanba E., Oshima A., Suzuki Y., et al. (2003). Attenuation of ganglioside GM1 accumulation in the brain of GM1 gangliosidosis mice by neonatal intravenous gene transfer. Gene Ther. 10 1487–1493. 10.1038/sj.gt.3302033
    1. Tebani A., Sudrie-Arnaud B., Dabaj I., Torre S., Domitille L., Snanoudj S., et al. (2021). Disentangling molecular and clinical stratification patterns in beta-galactosidase deficiency. J. Med. Genet. 10.1136/jmedgenet-2020-107510 [Epub ahead of print].
    1. Tessitore A., del P. M. M., Sano R., Ma Y., Mann L., Ingrassia A., et al. (2004). GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol. Cell 15 753–766. 10.1016/j.molcel.2004.08.029
    1. Thonhofer M., Weber P., Santana A. G., Fischer R., Pabst B. M., Paschke E., et al. (2016). Synthesis of C-5a-chain extended derivatives of 4-epi-isofagomine: powerful beta-galactosidase inhibitors and low concentration activators of GM1-gangliosidosis-related human lysosomal beta-galactosidase. Bioorg. Med. Chem. Lett. 26 1438–1442. 10.1016/j.bmcl.2016.01.059
    1. Tifft C., Adams D., Morgan C. (2007). 55 Miglustat improves function in patients with juvenile GM1 gangliosidosis. Mol. Genet. Metab. 4:24.
    1. Tonin R., Caciotti A., Procopio E., Fischetto R., Deodato F., Mancardi M. M., et al. (2019). Pre-diagnosing and managing patients with GM1 gangliosidosis and related disorders by the evaluation of GM1 ganglioside content. Sci. Rep. 9:17684. 10.1038/s41598-019-53995-5
    1. Treiber A., Morand O., Clozel M. (2007). The pharmacokinetics and tissue distribution of the glucosylceramide synthase inhibitor miglustat in the rat. Xenobiotica 37 298–314. 10.1080/00498250601094543
    1. Tsay G. C., Dawson G. (1976). Oligosaccharide storage in brains from patients with fucosidosis, GM1-gangliosidosis and GM2-gangliosidosis (Sandhoff’s disease). J. Neurochem. 27 733–740. 10.1111/j.1471-4159.1976.tb10401.x
    1. Weismann C. M., Ferreira J., Keeler A. M., Su Q., Qui L., Shaffer S. A., et al. (2015). Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Hum. Mol. Genet. 24 4353–4364. 10.1093/hmg/ddv168
    1. Yoshida K., Oshima A., Shimmoto M., Fukuhara Y., Sakuraba H., Yanagisawa N., et al. (1991). Human beta-galactosidase gene mutations in GM1-gangliosidosis: a common mutation among Japanese adult/chronic cases. Am. J. Hum. Genet. 49 435–442.

Source: PubMed

3
订阅