Emergency medical genomes: a breakthrough application of precision medicine

Stephen F Kingsmore, Josh Petrikin, Laurel K Willig, Erin Guest, Stephen F Kingsmore, Josh Petrikin, Laurel K Willig, Erin Guest

Abstract

Today there exist two medical applications where relatively strong evidence exists to support the broad adoption of genome-informed precision medicine. These are the differential diagnosis of single gene diseases and genotype-based selection of patients for targeted cancer therapies. However, despite the availability of the $1000 genome and $700 exome for research, there is as yet little broad uptake of genomic medicine, even in these applications. Significant impediments to mainstream adoption exist, including unavailability in many institutions, lack of scalability in others, a dearth of physician understanding of interpreted genome or exome results or knowledge of how to translate consequent precision medicine care plans, and a lack of test reimbursement. In short, genomic medicine lacks a breakthrough application. Rapid genome sequencing of acutely ill infants with suspected genetic diseases (STATseq) may become that application when scaled to dozens of trios per day without loss of timeliness or accuracy. Also critical for broad adoption is embedding STATseq in software for timely patient ascertainment, augmented intelligence for interpretation, explanation of results for generalist physicians, and dynamic precision medicine decision support.

Figures

Fig. 1
Fig. 1
Near-term improvements in clinical genomes to enable 14 h time to molecular diagnosis of genetic disease. Note that time of interpretation us highly variable. Fifteen minutes is a lowest estimate. Abbreviations: FDA US Food and Drug Administration; nt nucleotide, QC quality control

References

    1. "Killer Application". Merrian-Webmaster. Merriam-Webster, Incorporated. . Accessed 4 April 2015.
    1. Topol E. The patient will see you now: the future of medicine is in your hands. New York: Basic Books; 2015.
    1. Kaganovich M. Genomics needs a killer Application. . Accessed 4 April 2015.
    1. Moore GA. Crossing the chasm: Marketing and selling disruptive products to mainstream customers. 3. New York: Harper Collins; 2014.
    1. Illumina, Inc. Illumina Introduces the HiSeq X™ Ten Sequencing System. . zhtml?c = 121127&p = irol-newsArticle&ID = 1890696. Accessed 4 April 2015.
    1. Baby’s First Test. What is newborn screening? . Accessed 9 July 2014.
    1. DeLuca J, Zanni KL, Bonhomme N, Kemper AR. Implications of newborn screening for nurses. J Nurs Scholarsh. 2013;45:25–33. doi: 10.1111/jnu.12005.
    1. Pass KA, Lane PA, Fernhoff PM, Hinton CF, Panny SR, Parks JS, Pelias MZ, Rhead WJ, Ross SI, Wethers DL, Elsas LJ., 2nd US newborn screening system guidelines II: follow-up of children, diagnosis, management, and evaluation. Statement of the Council of Regional Networks for Genetic Services (CORN) J Pediatr. 2000;137:S1–46. doi: 10.1067/mpd.2000.109437.
    1. Soden SE, Saunders CJ, Willig LK, Farrow EG, Smith LD, Petrikin JE. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6:265ra168.
    1. Srivastava S, Cohen JS, Vernon H, Barañano K, McClellan R, Jamal L. Clinical whole exome sequencing in child neurology practice. Ann Neurol. 2014;76:473–83. doi: 10.1002/ana.24251.
    1. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312:1870–9. doi: 10.1001/jama.2014.14601.
    1. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–7. doi: 10.1001/jama.2014.14604.
    1. Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, van Kogelenberg M. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet. 2015;385:1305–14. doi: 10.1016/S0140-6736(14)61705-0.
    1. Consortium ICG, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C. International network of cancer genome projects. Nature. 2010;464:993–8. doi: 10.1038/nature08987.
    1. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L. The Pediatric Cancer Genome Project. Nat Genet. 2012;44:619–22. doi: 10.1038/ng.2287.
    1. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.
    1. Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–52. doi: 10.1038/nature06913.
    1. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15. doi: 10.1056/NEJMoa1403088.
    1. Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol. 2015;12:344–57. doi: 10.1038/nrclinonc.2015.38.
    1. Inoue A, Suzuki T, Fukuhara T, Maemondo M, Kimura Y, Morikawa N. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol. 2006;24:3340–6. doi: 10.1200/JCO.2005.05.4692.
    1. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–1703. doi: 10.1056/NEJMoa1006448.
    1. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13:239–46. doi: 10.1016/S1470-2045(11)70393-X.
    1. Sequist LV, Martins RG, Spigel D, Grunberg SM, Spira A, Jänne PA. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol. 2008;26:2442–9. doi: 10.1200/JCO.2007.14.8494.
    1. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12. doi: 10.1016/S1470-2045(11)70232-7.
    1. LUNG-MAP. . Accessed 4 April 2015.
    1. . NCI-MPACT: Molecular Profiling-Based Assignment of Cancer Therapy for Patients With Advanced Solid Tumors. . Accessed 4 April 2015.
    1. National Cancer Institute. NCI Molecular Analysis for Therapy Choice Program (MATCH) & Pediatric MATCH. . Accessed 4 Apr 2015.
    1. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96. doi: 10.1038/nrg2841.
    1. Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153:17–37. doi: 10.1016/j.cell.2013.03.002.
    1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58. doi: 10.1126/science.1235122.
    1. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27:15–26. doi: 10.1016/j.ccell.2014.12.001.
    1. Roychowdhury S, Chinnaiyan AM. Translating genomics for precision cancer medicine. Annu Rev Genomics Hum Genet. 2014;15:395–415. doi: 10.1146/annurev-genom-090413-025552.
    1. Hayes DN, Kim WY. The next steps in next-gen sequencing of cancer genomes. J Clin Invest. 2015;125:462–8. doi: 10.1172/JCI68339.
    1. Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra135.
    1. Rapid library preparation — kapa hyper plus. . Accessed 4 April 2015.
    1. Miller N. Pediatric Genomic Medicine. 2014. . Accessed 4 April 2015.
    1. Stranneheim H, Engvall M, Naess K, Lesko N, Larsson P, Dahlberg M. Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism. BMC Genomics. 2014;15:1090. doi: 10.1186/1471-2164-15-1090.
    1. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH. Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013;29:2041–3. doi: 10.1093/bioinformatics/btt314.
    1. Bio-IT World. To Speed Sequencing, Edico Genome Proposes NGS Processor. 2014. . Accessed 4 April 2015.
    1. Martin JA, Hamilton BE, Osterman MHK, Curtin SC, Mathews TJ. Births: final Data for 2012. Hyattsville, MD: US Department of Health and Human Services; 2013.
    1. Centers for Disease Control and Prevention. Pregnancy Risk Assessment Monitoring System. . Retrieved 2 October 2014.
    1. Willig LK, Petrikin JE, Smith LD, Saunders CJ, Thiffault I, Miller NA. Retrospective analysis of diagnostic and clinical findings among critically ill infants receiving rapid whole genome sequencing for identification of Mendelian disorders. Lancet Resp Med. 2015;3:377–87. doi: 10.1016/S2213-2600(15)00139-3.
    1. Watson MS, Lloyd-Puryear MA, Mann MY, Rinaldo P, Howell RR. Newborn screening. Main report. Genet. Med. 2006;8:12S–252S. doi: 10.1097/01.gim.0000223467.60151.02.
    1. Kerstjens-Frederikse WS, van Diemen CC, de Koning TJ, Sikkema-Raddatz B, Jongbloed JDH, Abbott KM. Rapid screening for monogenic diseases in severely ill newborns using whole genome sequencing. . Accessed 4 April 2015.
    1. Priest JR, Ceresnak SR, Dewey FE, Malloy-Walton LE, Dunn K, Grove ME. Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing. Heart Rhythm. 2014;11:1707–13. doi: 10.1016/j.hrthm.2014.06.030.

Source: PubMed

3
订阅