Safety and Effectiveness of Cell Therapy in Neurodegenerative Diseases: Take-Home Messages From a Pilot Feasibility Phase I Study of Progressive Supranuclear Palsy

Rosaria Giordano, Margherita Canesi, Maurizio Isalberti, Giovanni Marfia, Rolando Campanella, Daniele Vincenti, Viviana Cereda, Alessandra Ranghetti, Chiara Palmisano, Ioannis Ugo Isaias, Riccardo Benti, Giorgio Marotta, Lorenza Lazzari, Tiziana Montemurro, Mariele Viganò, Silvia Budelli, Elisa Montelatici, Cristiana Lavazza, Araceli Rivera-Ordaz, Gianni Pezzoli, Rosaria Giordano, Margherita Canesi, Maurizio Isalberti, Giovanni Marfia, Rolando Campanella, Daniele Vincenti, Viviana Cereda, Alessandra Ranghetti, Chiara Palmisano, Ioannis Ugo Isaias, Riccardo Benti, Giorgio Marotta, Lorenza Lazzari, Tiziana Montemurro, Mariele Viganò, Silvia Budelli, Elisa Montelatici, Cristiana Lavazza, Araceli Rivera-Ordaz, Gianni Pezzoli

Abstract

Mesenchymal stromal cells (MSCs) are multipotent cells with anti-inflammatory properties. Here we tested the safety of MSCs in patients with progressive supranuclear palsy (PSP; ClinicalTrials.gov: NCT01824121; Eudract No. 2011-004051-39). Seven patients were treated. To improve the safety, protocol adjustments were made during the performance of the study. The objectives of our work were: (1) to assess the safety of MSCs and (2) to identify critical issues in cell therapies for neurodegenerative diseases. Autologous MSCs from the bone marrow of PSP patients were administered through the internal carotid arteries. 1-year survival and number of severe adverse events were considered as safety endpoints. Clinical rating scales, neuropsychological assessments, gait and posture analysis, single-photon emission computed tomography, positron emission tomography, and brain magnetic resonance (BMR) were performed at different follow-up times. Peripheral blood levels of inflammatory cytokines were measured before and after cell infusion. Six of the seven treated patients were living 1 year after cell infusion. Asymptomatic spotty lesions were observed at BMR after 24 h in six of the seven treated patients. The last patient in the preliminary cohort (Case 5) exhibited transiently symptomatic BMR ischemic alterations. No severe adverse events were recorded in the last two treated patients. Interleukin-8 serum concentrations decreased in three patients (Case 2, 3, and 4). An adaptive study design, appropriate and up-to-date efficacy measures, adequate sample size estimation, and, possibly, the use of a cellular and/or allogeneic cell sources may help in performing phase II trials in the field.

Keywords: Parkinson’s disease; cell therapy; mesenchymal stromal cells (MSCs); posture; progressive supranuclear palsy (PSP).

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Giordano, Canesi, Isalberti, Marfia, Campanella, Vincenti, Cereda, Ranghetti, Palmisano, Isaias, Benti, Marotta, Lazzari, Montemurro, Viganò, Budelli, Montelatici, Lavazza, Rivera-Ordaz and Pezzoli.

Figures

FIGURE 1
FIGURE 1
Study flow diagram showing the patient enrollment, allocation, follow-up, and analysis in the phase I study. IMP, investigational medicinal product; MSCs, mesenchymal stromal cells.
FIGURE 2
FIGURE 2
Clinical assessments data per single patient and at each time point. (A) UPDRS III (Unified Parkinson’s Disease Rating Scale part III, motor score); (B) PSP – RS (PSP Rating Scale). The star symbol (*) identifies those measures that overcome the stabilization threshold as defined in the text.

References

    1. Angelova P. R., Barilani M., Lovejoy C., Dossena M., Viganò M., Seresini A., et al. (2018). Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation. Redox Biol. 14 474–484. 10.1016/j.redox.2017.10.016
    1. Bevan-Jones W. R., Cope T. E., Jones P. S., Passamonti L., Hong Y. T., Fryer T., et al. (2019). In vivo evidence for pre-symptomatic neuroinflammation in a MAPT mutation carrier. Ann. Clin. Transl. Neurol. 6 373–378. 10.1002/acn3.683
    1. Brazzini A., Cantella R., De la Cruz A., Yupanqui J., León C., Jorquiera T., et al. (2010). Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. J. Vasc. Interv. Radiol. 21 443–451. 10.1016/j.jvir.2010.01.008
    1. Calogero A. M., Viganò M., Budelli S., Galimberti D., Fenoglio C., Cartelli D., et al. (2018). Microtubule defects in mesenchymal stromal cells distinguish patients with progressive supranuclear palsy. J. Cellular Mol. Med. 22 2670–2679. 10.1111/jcmm.13545
    1. Canesi M., Giordano R., Lazzari L., Isalberti M., Isaias I. U., Benti R., et al. (2016). Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy. J. Transl. Med. 14:127.
    1. Coppin L., Sokal E., Stéphenne X. (2019). Thrombogenic risk induced by intravascular mesenchymal stem cell therapy: current status and future perspectives. Cells 8:1160. 10.3390/cells8101160
    1. Cui L., Kerkelä E., Bakreen A., Nitzsche F., Andrzejewska A., Nowakowski A. (2015). The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res. Ther. 6 11–19. 10.1186/scrt544
    1. Cyranoski D. (2012). Canada approves stem cell product. Nat. Biotechnol. 30:571. 10.1038/nbt0712-571b
    1. De Becker A., Riet I. V. (2016). Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J. Stem Cells 8 73–87. 10.4252/wjsc.v8.i3.73
    1. Dickson D., Hauw J.-J., Agid Y., Litvan I. (2011). “Progressive supranuclear palsy and corticobasal degeneration,” in Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders, 2nd Edn, eds Dickson D. W., Weller R. O. (Oxford: Wiley-Blackwell; ), 135–155.
    1. Everaert B. R., Bergwerf I., De Vocht N., Ponsaerts P., Van Der Linden A., Timmermans J. P., et al. (2012). Multimodal in vivo imaging reveals limited allograft survival, intrapulmonary cell trapping and minimal evidence for ischemia-directed BMSC homing. BMC Biotechnol. 12:93. 10.1186/1472-6750-12-93
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198.
    1. Gay M. H. P., Baldomero H., Farge-Bancel D., Robey P. G., Rodeo S., Passweg J., et al. (2021). The survey on cellular and tissue-engineered therapies in Europe in 2016 and 2017. Tissue Eng. Part A 27 336–350. 10.1089/ten.tea.2020.0092
    1. Giordano R., Canesi M., Isalberti M., Isaias I. U., Montemurro T., Viganò M., et al. (2014). Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study. J. Transl. Med. 12:14. 10.1186/1479-5876-12-14
    1. Goetz C. G., Poewe W., Rascol O., Sampaio C., Stebbins G. T., Counsell C., et al. (2004). Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov. Disord. 19 1020–1028. 10.1002/mds.20213
    1. Goetz C. G., Tilley B. C., Shaftman S. R., Stebbins G. T., Fahn S., Martinez-Martin P., et al. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23 2129–2170. 10.1002/mds.22340
    1. Golbe L. I., Ohman-Strickland P. A. (2007). A clinical rating scale for progressive supranuclear palsy. Brain 130 1552–1565. 10.1093/brain/awm032
    1. Grimm M. J., Respondek G., Stamelou M., Arzberger T., Ferguson L., Gelpi E., et al. (2019). Movement Disorder Society-endorsed PSP Study Group. How to apply the movement disorder society criteria for diagnosis of progressive supranuclear palsy. Mov. Disord. 34 1228–1232. 10.1002/mds.27666
    1. Höglinger G. U., Respondek G., Stamelou M., Kurz C., Josephs K. A., Lang A. E., et al. (2017). Movement Disorder Society-endorsed PSP Study Group. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32 853–864. 10.1002/mds.26987
    1. Inci I., Kusbeci O. Y., Eskut N. (2020). The neutrophil-to-lymphocyte ratio as a marker of peripheral inflammation in progressive supranuclear palsy: a retrospective study. Neurol. Sci. 41 1233–1237. 10.1007/s10072-019-04208-4
    1. Karlupia N., Manley N. C., Prasad K., Schäfer R., Steinberg G. K. (2014). Intraarterial transplantation of human umbilical cord blood mononuclear cells is more efficacious and safer compared with umbilical cord mesenchymal stromal cells in a rodent stroke model. Stem Cell Res. Ther. 5 45–63.
    1. Lee P. H., Lee J. E., Kim H. S., Song S. K., Lee H. S., Nam H. S., et al. (2012). A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann. Neurol. 72 32–40.
    1. Litvan I., Kong M. (2014). Rate of decline in progressive supranuclear palsy. Mov. Disord. 29 463–468. 10.1002/mds.25843
    1. Malpetti M., Passamonti L., Jones P. S., Street D., Rittman T., Fryer T. D., et al. (2021). Neuroinflammation predicts disease progression in progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 92 769–775. 10.1136/jnnp-2020-325549
    1. Marigo I., Dazzi F. (2011). The immunomodulatory properties of mesenchymal stem cells. Semin. Immunopathol. 33 593–602.
    1. Montemurro T., Viganò M., Budelli S., Montelatici E., Lavazza C., Marino L., et al. (2015). How we make cell therapy in Italy. Drug Des. Devel. Ther. 9 4825–4834. 10.2147/dddt.s80403
    1. Palmisano C., Todisco M., Marotta G., Volkmann J., Pacchetti C., Frigo C. A., et al. (2020). Gait initiation in progressive supranuclear palsy: brain metabolic correlates. Neuroimage Clin. 28:102408. 10.1016/j.nicl.2020.102408
    1. Paviour D. C., Price S. L., Jahanshahi M., Lees A. J., Fox N. C. (2006). Regional brain volumes distinguish PSP, MSA-P, and PD: MRI-based clinico-radiological correlations. Mov. Disord. 21 989–996.
    1. Sensebe L., Fleury-Cappellesso S. (2013). Biodistribution of mesenchymal stem/stromal cells in a preclinical setting. Stem Cells Int. 2013:678063. 10.1155/2013/678063
    1. Steele J. C., Richardson J. C., Olszewski J. (1964). Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 10 333–359. 10.1001/archneur.1964.00460160003001
    1. Tambuyzer E., Vandendriessche B., Austin C. P., Brooks P. J., Larsson K., Needleman K. I. M., et al. (2020). Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 19 93–111. 10.1038/s41573-019-0049-9
    1. van Megen K. M., van ’t Wout E.-J. T., Lages Motta J., Dekker B., Nikolic T., Roep B. O. (2019). Activated mesenchymal stromal cells process and present antigens regulating adaptive immunity. Front. Immunol. 10:694. 10.3389/fimmu.2019.00694
    1. Yi X., Liu M., Luo Q., Zhuo H., Cao H., Wang J., et al. (2017). Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS Open Bio. 7 485–494. 10.1002/2211-5463.12193

Source: PubMed

3
订阅