Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study

Rosaria Giordano, Margherita Canesi, Maurizio Isalberti, Ioannis Ugo Isaias, Tiziana Montemurro, Mariele Viganò, Elisa Montelatici, Valentina Boldrin, Riccardo Benti, Agostino Cortelezzi, Nicola Fracchiolla, Lorenza Lazzari, Gianni Pezzoli, Rosaria Giordano, Margherita Canesi, Maurizio Isalberti, Ioannis Ugo Isaias, Tiziana Montemurro, Mariele Viganò, Elisa Montelatici, Valentina Boldrin, Riccardo Benti, Agostino Cortelezzi, Nicola Fracchiolla, Lorenza Lazzari, Gianni Pezzoli

Abstract

Background: Progressive Supranuclear Palsy (PSP) is a sporadic and progressive neurodegenerative disease which belongs to the family of tauopathies and involves both cortical and subcortical structures. No effective therapy is to date available.

Methods/design: Autologous bone marrow (BM) mesenchymal stem cells (MSC) from patients affected by different type of parkinsonisms have shown their ability to improve the dopaminergic function in preclinical and clinical models. It is also possible to isolate and expand MSC from the BM of PSP patients with the same proliferation rate and immuphenotypic profile as MSC from healthy donors. BM MSC can be efficiently delivered to the affected brain regions of PSP patients where they can exert their beneficial effects through different mechanisms including the secretion of neurotrophic factors.Here we propose a randomized, placebo-controlled, double-blind phase I clinical trial in patients affected by PSP with MSC delivered via intra-arterial injection.

Discussion: To our knowledge, this is the first clinical trial to be applied in a no-option parkinsonism that aims to test the safety and to exploit the properties of autologous mesenchymal stem cells in reducing disease progression. The study has been designed to test the safety of this "first-in-man" approach and to preliminarily explore its efficacy by excluding the placebo effect.

Trial registration: NCT01824121.

Figures

Figure 1
Figure 1
Pre-clinical data. Bone marrow mesenchymal stem cells from patients affected by progressive supranuclear palsy have the typical spindle-shaped morphology (A), are positive for mesenchymal-specific antigens to an extended flow-cytometric analysis (B) and express BDNF and GDNF as those from healthy subjects, as demonstrated by real time PCR (C) and ELISA (D). BM MSC: bone marrow mesenchymal stem cells; PSP: Progressive Supranuclear Palsy; HS: healthy subjects. The results of flow cytometric analysis, Elisa and PCR are expressed as mean (±SD).
Figure 2
Figure 2
Study design. A) Pilot phase; B) Randomized study.

References

    1. Nath U, Ben-Shlomo Y, Thomson RG, Morris HR, Wood NW, Lees AJ, Burn DJ. The prevalence of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) in the UK. Brain. 2001;124:1438–1449.
    1. Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology. 1997;49:1284–1288.
    1. Ludolph AC. et al.Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers and treatment options. Eur J Neurol. 2009;16:297–309.
    1. Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, Goetz CG, Golbe LI, Grafman J, Growdon JH, Hallett M, Jankovic J, Quinn NP, Tolosa E, Zee DS. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology. 1996;47:1–9.
    1. Litvan I, Campbell G, Mangone CA, Verny M, McKee A, Chaudhuri KR, Jellinger K, Pearce RK, D’Olhaberriague L. Which clinical features differentiate progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) from related disorders? A clinicopathological study. Brain. 1997;120:65–74.
    1. Karakaya T, Fußer F, Prvulovic D, Hampel H. Treatment options for tauopathies. Curr Treat Options Neurol. 2012;14:126–36.
    1. Zampieri C, Di Fabio RP. Progressive supranuclear palsy: disease profile and rehabilitation strategies. Phys Ther. 2006;86:870–880.
    1. Nath U, Ben-Shlomo Y, Thomson RG, Lees AJ, Burn DJ. Clinical features and natural history of pregressive supranuclear palsy. A clinical cohort study. Neurology. 2003;60:910–916.
    1. Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I, Quinn N, Sethi KD, Shults C, Wenning GK. Movement Disorders Society Scientific Issues Committee. Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord. 2003;18:467–486.
    1. Golbe LI. Neurodegeneration in the age of molecular biology. BMJ. 2002;324:1467–1468.
    1. Ferrer I, López-González I, Carmona M, Arregui L, Dalfó E, Torrejón-Escribano B, Diehl R, Kovacs GG. Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol. 2014;73:81–97.
    1. Ghawche F, Durif F. Dopaminergic treatment and parkinsonian syndromes. Rev Neurol. 2003;159:3S83–3S86.
    1. Hilker R, Benecke R, Deuschl G, Fogel W, Kupsch A, Schrader C, Sixel-Döring F, Timmermann L, Volkmann J, Lange M. German Deep Brain Stimulation Association. Deep brain stimulation for Parkinson’s disease. Consensus recommendations of the German Deep Brain Stimulation Association. Nervenarzt. 2009;80:646–655.
    1. Silberstein P, Bittar RG, Boyle R, Cook R, Coyne T, O’Sullivan D, Pell M, Peppard R, Rodrigues J, Silburn P, Stell R, Watson P. Australian DBS Referral Guidelines Working Group. Deep brain stimulation for Parkinson’s disease: Australian referral guidelines. J Clin Neurosci. 2009;16:1001–1008.
    1. von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, Ljungman P, Gustafsson B, Karlsson H, Le Blanc K, Ringdén O. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. 2012;18:557–564.
    1. Wang S, Cheng H, Dai G, Wang X, Hua R, Liu X, Wang P, Chen G, Yue W, An Y. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 2013. Epub ahead of print.
    1. Jiang PC, Xiong WP, Wang G, Ma C, Yao WQ, Kendell SF, Mehling BM, Yuan XH, Wu DC. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med. 2013;6:140–146.
    1. Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, Zissimopoulos A, Boussios N, Dardzinski B, Gritzalis D, Antoniadis A, Froudarakis M, Kolios G, Bouros D. A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med. 2013;11:171.
    1. Yamada Y, Nakamura S, Ito K, Umemura E, Hara K, Nagasaka T, Abe A, Baba S, Furuichi Y, Izumi Y, Klein OD, Wakabayashi T. Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells. 2013;31:572–80.
    1. Blum R, Konnerth A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology. 2005;20:70–8.
    1. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature. 2001;411:86–9.
    1. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3:383–94.
    1. Ugarte SD, Lin E, Klann E, Zigmond MJ, Perez RG. Effects of GDNF on 6-OHDA-induced death in a dopaminergic cell line: modulation by inhibitors of PI3 kinase and MEK. J Neurosci Res. 2003;73:105–12.
    1. Poteryaev D, Titievsky A, Sun YF, Thomas-Crusells J, Lindahl M, Billaud M, Arumäe U, Saarma M. GDNF triggers a novel ret-independent Src kinase family-coupled signaling via a GPI-linked GDNF receptor alpha1. FEBS Lett. 1999;463:63–6.
    1. Besset V, Scott RP, Ibáñez CF. Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem. 2000;275:39159–66.
    1. Coulpier M, Anders J, Ibáñez CF. Coordinated activation of autophosphorylation sites in the RET receptor tyrosine kinase: importance of tyrosine 1062 for GDNF mediated neuronal differentiation and survival. J Biol Chem. 2002;277:1991–9.
    1. Lin MN, Shang DS, Sun W, Li B, Xu X, Fang WG, Zhao WD, Cao L, Chen YH. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Res. 2013;1513:1–8.
    1. Brazzini A, Cantella R, De la Cruz A, Yupanqui J, León C, Jorquiera T, Brazzini M, Ortega M, Saenz LN. Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. J Vasc Interv Radiol. 2010;21:443–451.
    1. Bruno S, Camussi G. Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol. 2013;28:2249–54.
    1. Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, Lanza P, Barone P, Morgante L, Zappia M, Aguglia U, Gallo O. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology. 2008;246:214–21.
    1. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N. Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.
    1. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, Giladi N, Holloway RG, Moore CG, Wenning GK, Yahr MD, Seidl L. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19:1020–8.
    1. Golbe LI, Ohman-Strickland PA. A clinical rating scale for progressive supranuclear palsy. Brain. 2007;130:1152–65.
    1. Streiner DL, Norman GR. Health measurement scales: a practical guide to their development and use. Oxford: Oxford University Press; 2003. doi:10.1093/acprof:oso/9780199231881.001.0001.
    1. Crenna P, Carpinella I, Lopiano L, Marzegan A, Rabuffetti M, Rizzone M, Lanotte M, Ferrarin M. Influence of basal ganglia on upper limb locomotor synergies. Evidence from deep brain stimulation and L-DOPA treatment in Parkinson’s disease. Brain. 2008;131:3410–20.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.
    1. Jenkinson C, Fitzpatrick R. Cross-cultural evaluation of the short form 8-item Parkinson’s disease Questionnaire (PDQ-8): results from America, Canada, Japan, Italy and Spain. Parkinsonism Relat Disord. 2007;13:22–28.
    1. National Cancer Institute Common Toxicity Criteria Manual `(CTCAE v 4.0) available at .
    1. Goetz CG, Olanow CW, Koller WC, Penn RD, Cahill D, Morantz R, Stebbins G, Tanner CM, Klawans HL, Shannon KM. Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N Engl J Med. 1989;320:337–341.
    1. Pezzoli G, Motti E, Zecchinelli A, Ferrante C, Silani V, Falini A, Pizzuti A, Mulazzi D, Baratta P, Vegeto A. Adrenal medulla autograft in 3 parkinsonian patients: results using two different approaches. Prog Brain Res. 1990;82:677–682.
    1. Olanow CW, Koller W, Goetz CG, Stebbins TG, Cahill DW, Gauger LL, Morantz R, Penn RD, Tanner CM, Klawans HL, Shannon KM, Comella CL, Witt T. Autologous transplantation of adrenal medulla in Parkinson’s disease: 18-month results. Arch Neurol. 1990;47:1286–1289.
    1. Fazzini E, Dwork AJ, Blum C, Burke R, Cote L, Goodman RR, Jacobs TP, Naini AB, Pezzoli G, Pullman S, Solomon RA, Truong D, Weber CJ, Fahn S. Stereotaxic implantation of autologous adrenal medulla into caudate nucleus in four patients with parkinsonism. One year follow-up. Arch Neurol. 1991;48:813–820.
    1. Fazzini E. Transplantation in the treatment of paralysis agitans (Parkinson’s disease) J Am Osteopath Assoc. 1992;92:1255–1260.
    1. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New Engl J Med. 2001;344:710–719.
    1. Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, Breeze R, Fahn S, Freed C, Eidelberg D. Dyskinesia after fetal cell transplantation for parkinsonism: PET study. Ann Neurol. 2002;52:628–634.
    1. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med. 2010;2:38–46.
    1. Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci. 2009;30:260–7.
    1. Olanow CW, Kordower JH, Lang AE, Obeso JA. Dopaminergic transplantation for Parkinson’s disease: current status and future prospects. Ann Neurol. 2009;66:591–6.
    1. Arias-Carrion O, Yuan TF. Autologous neural stem cell transplantation: a new treatment option for Parkinson’s disease? Med Hypotheses. 2009;73:757–759.
    1. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci. 1997;94:4080–4085.
    1. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779–1782.
    1. Cogle CR, Yachnis AT, Laywell ED, Zander DS, Wingard JR, Steindler DA, Scott EW. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet. 2004;363:1432–7.
    1. Cova L, Bossolasco P, Armentero MT, Diana V, Zennaro E, Mellone M, Calzarossa C, Cerri S, Deliliers GL, Polli E, Blandini F, Silani V. Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson’s disease. Apoptosis. 2012;17:289–304.
    1. Cova L, Armentero MT, Zennaro E, Calzarossa C, Bossolasco P, Busca G, Lambertenghi Deliliers G, Polli E, Nappi G, Silani V, Blandini F. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res. 2010;1311:12–27.
    1. Blandini F, Cova L, Armentero MT, Zennaro E, Levandis G, Bossolasco P, Calzarossa C, Mellone M, Giuseppe B, Deliliers GL, Polli E, Nappi G, Silani V. Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant. 2010. pp. 203–17.
    1. Lee PH, Park HJ. Bone-marrow-derived mesenchymal stem cell therapy as a candidate disease-modifying strategy in Parkinson’s disease. Multiple system atrophy. J Clin Neurol. 2009;5:1–10.
    1. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol. 2007;211:27–35.
    1. Zhang Z, Wang X, Wang S. Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson’s disease. In Vitro Cell Dev Biol Anim. 2008;44(5–6):169–77.
    1. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem. 2008;107:141–151.
    1. Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia. 2009;57:13–23.
    1. Jin GZ, Cho SJ, Choi EG, Lee YS, Yu XF, Choi KS, Yee ST, Jeon JT, Kim MO, Kong IK. Rat mesenchymal stem cells increase tyrosine hydroxylase expressioni and dopamine content in ventral mesencephalic cells in vitro. Cell Biol Int. 2008;32(11):1433–8.
    1. Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB, Bulvik S, Shemesh N, Krepel D, Cohen Y, Melamed E, Offen D. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev. 2009;18(8):1179–90.
    1. Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K. Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther. 2008;83:723–730.
    1. Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y, Park HJ, Kim DJ, Nam CM, Lee JD, Kim HO, Sohn YH. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol. 2012;72:32–40.
    1. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res. 2010;155:62–70.
    1. Everaert BR, Bergwerf I, De Vocht N, Ponsaerts P, Van Der Linden A, Timmermans JP, Vrints CJ. Multimodal in vivo imaging reveals limited allograft survival, intrapulmonary cell trapping and minimal evidence for ischemia-directed bone marrow-derived stromal cell homing. BMC Biotechnol. 2012;12:93.
    1. Camp DM, Loeffler DA, Farrah DM, Borneman JN, LeWitt PA. Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson’s disease. J Neuroinflammation. 2009;6:17.

Source: PubMed

3
订阅