Prospective Validation of Indocyanine Green Lymphangiography Staging of Breast Cancer-Related Lymphedema

Mads Gustaf Jørgensen, Navid Mohamadpour Toyserkani, Frederik Christopher Gulmark Hansen, Jørn Bo Thomsen, Jens Ahm Sørensen, Mads Gustaf Jørgensen, Navid Mohamadpour Toyserkani, Frederik Christopher Gulmark Hansen, Jørn Bo Thomsen, Jens Ahm Sørensen

Abstract

Indocyanine green lymphangiography (ICG-L) allows real-time investigation of lymphatics. Plastic surgeons performing lymphatic reconstruction use the ICG-L for patient selection and stratification using the MD Anderson (MDA) and the Arm Dermal Backflow (ADB) grading systems. However, the applicability of ICG-L in evaluating breast cancer-related lymphedema (BCRL) is sparse and not well established. This study comprehensively examines the usability of ICG-L in the assessment of BCRL. We prospectively performed ICG-L in 237 BCRL patients between January 2019 and February 2020. The aim of this study was to assess the interrater and intrarater agreement and interscale consensus of ratings made using the MDA and ADB scales. Three independent raters performed a total of 2607 ICG-L assessments. The ICG-L stage for each grading system was correlated to the lymphedema volume to assess the agreement between the ICG-L stage and clinical severity. The interrater agreement was near perfect for the MDA scale (kappa 0.82-0.90) and the ADB scale (kappa 0.80-0.91). Similarly, we found a near-perfect intrarater agreement for the MDA scale (kappa 0.84-0.94) and the ADB scale (kappa 0.88-0.89). The agreement between the MDA and the ADB scales was substantial (kappa 0.65-0.68); however, the ADB scale systematically overestimated lower ICG-L stages compared to the MDA scale. The volume of lymphedema correlated slightly with MDA stage (Spearmans rho = 0.44, p < 0.001) and ADB stage (rs = 0.35, p < 0.001). No serious adverse events occurred. The staging of BCRL with ICG-L is reliable, safe, and provides unique disease information unobtainable with clinical measurements alone. The MDA scale seems to provide better disease stratification compared to the ADB scale.

Keywords: breast cancer; indocyanine green; lymphangiography; lymphedema; observer.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
This figure shows the flowchart of included patients.
Figure 2
Figure 2
This figure shows Bland–Altman plots for interrater agreements in MDA and ADB scales. The x-axis represents the mean interrater stage (range: 0–5). The y-axis shows the difference in interrater staging (range: −5–5). R1= rater 1, R2 = rater 2, R3 = rater 3. The horizontal dotted lines denote the 95% confidence intervals for the limits of agreement.
Figure 3
Figure 3
This figure shows Bland–Altman plots for intrarater agreements in MDA and ADB scales. The x-axis represents the mean intrarater stage (range: 0–5). The y-axis shows the difference in intrarater staging (range: −5–5). The horizontal dotted lines denote the 95% confidence intervals for the limits of agreement. R2 = rater 2, R3 = rater 3. a = second assessment.
Figure 4
Figure 4
This figure shows Bland–Altman plots for interscale agreements between the MD Anderson and the Arm Dermal Backflow stages. The x-axis represents the mean interscale stage (range: 0–5). The y-axis shows the difference in interscale staging (range: −5–5). The horizontal dotted lines denote the 95% confidence intervals for the limits of agreement. R1 = rater 1, R2 = rater 2, R3 = rater 3. a = second assessment.
Figure 5
Figure 5
This figure shows the correlation between the MDA and ADB stages and clinical examination. (A) This figure shows the distribution of patients by MD Anderson stage. (B) This figure shows the distribution of patients by Arm Dermal Backflow stage. (C) This figure shows a violin plot of lymphedema volume stratified by MD Anderson stage. The thick dashed line denotes the median, and thin dashed lines denote the interquartile range. Plot thickness denotes the probability density of volumes at different values. (D) This figure shows a violin plot of lymphedema volume stratified by Arm Dermal Backflow stages. (E) This figure shows a violin plot of ICG velocity stratified by MD Anderson stage. (F) This figure shows a violin plot of ICG velocity stratified by the Arm Dermal Backflow stage. n = number of patients, p = p-value, n.s = not significant.

References

    1. Nguyen A.T., Suami H., Hanasono M.M., Womack V.A., Wong F.C., Chang E.I. Long-term outcomes of the minimally invasive free vascularized omental lymphatic flap for the treatment of lymphedema. J. Surg. Oncol. 2017;115:84–89. doi: 10.1002/jso.24379.
    1. Chang D.W., Suami H., Skoracki R. A prospective analysis of 100 consecutive lymphovenous bypass cases for treatment of extremity lymphedema. Plast. Reconstr. Surg. 2013;132:1305–1314. doi: 10.1097/PRS.0b013e3182a4d626.
    1. Boyages J., Koelmeyer L.A., Suami H., Lam T., Ngo Q.D., Heydon-White A., Czerniec S., Munot S., Ho-Shon K., Mackie H. The ALERT model of care for the assessment and personalized management of patients with lymphoedema. BJS. 2020;107:238–247. doi: 10.1002/bjs.11368.
    1. Rosian K., Stanak M. Efficacy and safety assessment of lymphovenous anastomosis in patients with primary and secondary lymphoedema: A systematic review of prospective evidence. Microsurgery. 2019;39:763–772. doi: 10.1002/micr.30514.
    1. Narushima M., Yamamoto T., Ogata F., Yoshimatsu H., Mihara M., Koshima I. Indocyanine Green Lymphography Findings in Limb Lymphedema. J. Reconstr. Microsurg. 2015;32:72–79.
    1. Yamamoto T., Yamamoto N., Doi K., Oshima A., Yoshimatsu H., Todokoro T., Ogata F., Mihara M., Narushima M., Iida T., et al. Indocyanine Green–Enhanced Lymphography for Upper Extremity Lymphedema. Plast. Reconstr. Surg. 2011;128:941–947. doi: 10.1097/PRS.0b013e3182268cd9.
    1. Aso K., Tsukuura R. Universal ICG lymphography stage for reproducible severity evaluation of extremity lymphedema. J. Plast. Reconstr. Aesthetic Surg. 2021 doi: 10.1016/j.bjps.2020.12.106.
    1. Chen W.F., Zhao H., Yamamoto T., Hara H., Ding J. Indocyanine Green Lymphographic Evidence of Surgical Efficacy Following Microsurgical and Supermicrosurgical Lymphedema Reconstructions. J. Reconstr. Microsurg. 2016;32:688–698.
    1. Wiser I., Mehrara B.J., Coriddi M., Kenworthy E., Cavalli M., Encarnacion E., Dayan J.H. Preoperative Assessment of Upper Extremity Secondary Lymphedema. Cancers. 2020;12:135. doi: 10.3390/cancers12010135.
    1. Mihara M., Hara H., Narushima M., Todokoro T., Iida T., Ohtsu H., Murai N., Koshima I. Indocyanine green lymphography is superior to lymphoscintigraphy in imaging diagnosis of secondary lymphedema of the lower limbs. J. Vasc. Surg. Venous Lymphat. Disord. 2013;1:194–201. doi: 10.1016/j.jvsv.2012.07.011.
    1. Garza R.M., Ooi A.S.H., Falk J., Chang D.W. The Relationship between Clinical and Indocyanine Green Staging in Lymphedema. Lymphat. Res. Biol. 2019;17:329–333. doi: 10.1089/lrb.2018.0014.
    1. Suami H., Heydon-White A., Mackie H., Czerniec S., Koelmeyer L., Boyages J. A new indocyanine green fluorescence lymphography protocol for identification of the lymphatic drainage pathway for patients with breast cancer-related lymphoedema. BMC Cancer. 2019;19:985. doi: 10.1186/s12885-019-6192-1.
    1. Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet (Lond. Eng.) 2007;370:1453–1457. doi: 10.1016/S0140-6736(07)61602-X.
    1. Christiansen P., Ejlertsen B., Jensen M.B., Mouridsen H. Danish breast cancer cooperative group. Clin. Epidemiol. 2016;8:445–449. doi: 10.2147/CLEP.S99457.
    1. Yamamoto T., Narushima M., Yoshimatsu H., Yamamoto N., Kikuchi K., Todokoro T., Iida T., Koshima I. Dynamic Indocyanine Green (ICG) lymphography for breast cancer-related arm lymphedema. Ann. Plast. Surg. 2014;73:706–709. doi: 10.1097/SAP.0b013e318285875f.
    1. Brorson H., Höijer P. Standardised measurements used to order compression garments can be used to calculate arm volumes to evaluate lymphoedema treatment. J. Plast. Surg. Hand. Surg. 2012;46:410–415. doi: 10.3109/2000656X.2012.714785.
    1. Executive Committee of the International Society of Lymphology The diagnosis and treatment of peripheral lymphedema: 2020 consensus document of the international society of lymphology. Lymphology. 2020;53:3–19.
    1. McHugh M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012;22:276–282. doi: 10.11613/BM.2012.031.
    1. Mukaka M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012;24:69–71.
    1. Akita S., Nakamura R., Yamamoto N., Tokumoto H., Ishigaki T., Yamaji Y., Sasahara Y., Kubota Y., Mitsukawa N., Satoh K. Early Detection of Lymphatic Disorder and Treatment for Lymphedema following Breast Cancer. Plast. Reconstr. Surg. 2016;138:192e–202e. doi: 10.1097/PRS.0000000000002337.
    1. Jørgensen M.G., Toyserkani N.M., Sørensen J.A. The effect of prophylactic lymphovenous anastomosis and shunts for preventing cancer-related lymphedema: A systematic review and meta-analysis. Microsurgery. 2017;38:576–585. doi: 10.1002/micr.30180.
    1. Johnson A.R., Asban A., Granoff M.D., Kang C.O., Lee B.T., Chatterjee A., Singhal D. Is Immediate Lymphatic Reconstruction Cost-effective? Ann. Surg. 2019 doi: 10.1097/SLA.0000000000003746.
    1. Mihara M., Hara H., Furniss D., Narushima M., Iida T., Kikuchi K., Ohtsu H., Gennaro P., Gabriele G., Murai N. Lymphaticovenular anastomosis to prevent cellulitis associated with lymphoedema. Br. J. Surg. 2014;101:1391–1396. doi: 10.1002/bjs.9588.
    1. Sharkey A.R., King S.W., Ramsden A.J., Furniss D. Do surgical interventions for limb lymphoedema reduce cellulitis attack frequency? Microsurgery. 2017;37:348–353. doi: 10.1002/micr.30115.
    1. Al-Jindan F.K., Lin C.-Y., Cheng M.-H. Comparison of Outcomes between Side-to-End and End-to-End Lymphovenous Anastomoses for Early-Grade Extremity Lymphedema. Plast. Reconstr. Surg. 2019;144:486–496. doi: 10.1097/PRS.0000000000005870.
    1. Hara H., Mihara M., Seki Y., Todokoro T., Iida T., Koshima I. Comparison of Indocyanine Green Lymphographic Findings with the Conditions of Collecting Lymphatic Vessels of Limbs in Patients with Lymphedema. Plast. Reconstr. Surg. 2013;132:1612–1618. doi: 10.1097/PRS.0b013e3182a97edc.
    1. Mihara M., Hara H., Hayashi Y., Narushima M., Yamamoto T., Todokoro T., Iida T., Sawamoto N., Araki J., Kikuchi K., et al. Pathological Steps of Cancer-Related Lymphedema: Histological Changes in the Collecting Lymphatic Vessels after Lymphadenectomy. PLoS ONE. 2012;7:e41126. doi: 10.1371/journal.pone.0041126.
    1. Thomis S., Dams L., Fourneau I., De Vrieze T., Nevelsteen I., Neven P., Gebruers N., Devoogdt N. Correlation Between Clinical Assessment and Lymphofluoroscopy in Patients with Breast Cancer-Related Lymphedema: A Study of Concurrent Validity. Lymphat. Res. Biol. 2020;18:539–548. doi: 10.1089/lrb.2019.0090.
    1. Tambour M., Holt M., Speyer A., Christensen R., Gram B. Manual lymphatic drainage adds no further volume reduction to Complete Decongestive Therapy on breast cancer-related lymphoedema: A multicentre, randomised, single-blind trial. Br. J. Cancer. 2018;119:1215–1222. doi: 10.1038/s41416-018-0306-4.
    1. Bains S.K., Peters A.M., Zammit C., Ryan N., Ballinger J., Glass D.M., Allen S., Stanton A.W., Mortimer P.S., Purushotham A.D. Global abnormalities in lymphatic function following systemic therapy in patients with breast cancer. Br. J. Surg. 2015;102:534–540. doi: 10.1002/bjs.9766.
    1. Pain S.J., Purushotham A.D., Barber R.W., Ballinger J.R., Solanki C.K., Mortimer P.S., Peters A.M. Variation in lymphatic function may predispose to development of breast cancer-related lymphoedema. Eur. J. Surg. Oncol. 2004;30:508–514. doi: 10.1016/j.ejso.2004.02.008.
    1. Aldrich M.B., Guilliod R., Fife C.E., Maus E.A., Smith L., Rasmussen J.C., Sevick-Muraca E.M. Lymphatic abnormalities in the normal contralateral arms of subjects with breast cancer-related lymphedema as assessed by near-infrared fluorescent imaging. Biomed. Opt. Express. 2012;3:1256–1265. doi: 10.1364/BOE.3.001256.
    1. Burnand K.M., Glass D.M., Mortimer P.S., Peters A.M. Lymphatic Dysfunction in the Apparently Clinically Normal Contralateral Limbs of Patients with Unilateral Lower Limb Swelling. Clin. Nucl. Med. 2012;37:9–13. doi: 10.1097/RLU.0b013e31823931f5.
    1. Pain S.J., Barber R.W., Ballinger J.R., Solanki C.K., Mortimer P.S., Purushotham A.D., Peters A.M. Local vascular access of radioprotein injected subcutaneously in healthy subjects and patients with breast cancer-related lymphedema. J. Nucl. Med. 2004;45:789–796.
    1. Johnson A.R., Granoff M.D., Suami H., Lee B.T., Singhal D. Real-Time Visualization of the Mascagni-Sappey Pathway Utilizing ICG Lymphography. Cancers. 2020;12:1195. doi: 10.3390/cancers12051195.
    1. Abbaci M., Conversano A., De Leeuw F., Laplace-Builhé C., Mazouni C. Near-infrared fluorescence imaging for the prevention and management of breast cancer-related lymphedema: A systematic review. Eur. J. Surg. Oncol. 2019;45:1778–1786. doi: 10.1016/j.ejso.2019.06.009.
    1. Groenlund J.H., Telinius N., Skov S.N., Hjortdal V. A Validation Study of Near-Infrared Fluorescence Imaging of Lymphatic Vessels in Humans. Lymphat. Res. Biol. 2017;15:227–234. doi: 10.1089/lrb.2016.0061.
    1. Karges J.R., Mark B.E., Stikeleather S.J., Worrell T.W. Concurrent validity of upper-extremity volume estimates: Comparison of calculated volume derived from girth measurements and water displacement volume. Phys. Ther. 2003;83:134–145. doi: 10.1093/ptj/83.2.134.
    1. De Sire A., Losco L., Cigna E., Lippi L., Gimigliano F., Gennari A., Cisari C., Chen H.C., Fusco N., Invernizzi M. Three-dimensional laser scanning as a reliable and reproducible diagnostic tool in breast cancer related lymphedema rehabilitation: A proof-of-principle study. Eur. Rev. Med. Pharmacol. Sci. 2020;24:4476–4485.
    1. Beederman M., Garza R.M., Agarwal S., Chang D.W. Outcomes for Physiologic Microsurgical Treatment of Secondary Lymphedema Involving the Extremity. Ann. Surg. 2020 doi: 10.1097/SLA.0000000000004457.
    1. Yang J.C.-S., Wu S.-C., Chiang M.-H., Lin W.-C., Hsieh C.-H. Intraoperative identification and definition of “functional” lymphatic collecting vessels for supermicrosurgical lymphatico-venous anastomosis in treating lymphedema patients. J. Surg. Oncol. 2018;117:994–1000. doi: 10.1002/jso.25014.
    1. Johnson A.R., Fleishman A., Tran B.N., Shillue K., Carroll B., Tsai L.L., Donohoe K.J., James T.A., Lee B.T., Singhal D. Developing a Lymphatic Surgery Program. Plast. Reconstr. Surg. 2019;144:975e–985e. doi: 10.1097/PRS.0000000000006223.
    1. Cheng M.-H., Pappalardo M., Lin C.-Y.C., Kuo C.-F., Lin C.-Y.C., Chung K.C. Validity of the Novel Taiwan Lymphoscintigraphy Staging and Correlation of Cheng Lymphedema Grading for Unilateral Extremity Lymphedema. Ann. Surg. 2018;268:513–525. doi: 10.1097/SLA.0000000000002917.
    1. Kajita H., Oh A., Urano M., Takemaru M., Imanishi N., Otaki M., Yagi T., Aiso S., Kishi K. Photoacoustic lymphangiography. J. Surg. Oncol. 2020;121:48–50. doi: 10.1002/jso.25575.

Source: PubMed

3
订阅