Clinical trials of artesunate plus sulfadoxine-pyrimethamine for Plasmodium falciparum malaria in Afghanistan: maintained efficacy a decade after introduction

Ghulam Rahim Awab, Mallika Imwong, Sasithon Pukrittayakamee, Fazel Alim, Warunee Hanpithakpong, Joel Tarning, Arjen M Dondorp, Nicholas P J Day, Nicholas J White, Charles J Woodrow, Ghulam Rahim Awab, Mallika Imwong, Sasithon Pukrittayakamee, Fazel Alim, Warunee Hanpithakpong, Joel Tarning, Arjen M Dondorp, Nicholas P J Day, Nicholas J White, Charles J Woodrow

Abstract

Background: Combination therapy with artesunate plus sulfadoxine-pyrimethamine (SP) was adopted as recommended treatment for Plasmodium falciparum infection in Afghanistan in 2003.

Methods: A series of prospective clinical studies examining the efficacy of artesunate plus sulfadoxine-pyrimethamine (AS + SP) against P. falciparum were undertaken in sentinel sites in Afghanistan from 2007 to 2014, accompanied by relevant molecular studies. The first study was a randomized trial of AS + SP versus dihydroartemisinin-piperaquine, while two subsequent studies were standard therapeutic efficacy studies of AS + SP.

Results: Three hundred and three patients were enrolled across four provinces in the north and east of the country. Curative efficacy was high in all the trials, with an adequate clinical and parasitological response (ACPR) of more than 95 % in all groups and trial stages. Genotyping for drug-resistance alleles at dhfr indicated fixation of the S108 N mutation and a prevalence of the C59R mutation of approximately 95 % across all sites. Other mutations in dhfr and dhps remained rare or absent entirely, although five isolates from the first trial carried the dhps triple mutant SGEGA haplotype. In the last study undertaken in 2012-2014 the K13 artemisinin resistance marker was examined; only two of 60 successfully sequenced samples carried a K13-propeller mutation.

Conclusions: These data confirm maintained efficacy 10 years after introduction of artesunate plus SP as combination treatment of P. falciparum in Afghanistan. The molecular data indicate that despite a substantial fall in incidence, resistance has not developed to artemisinins, or intensified to the ACT partner drug components. Trial Registration http://www.clinicaltrials.gov/ct NCT00682578, NCT01115439 and NCT01707199.

Figures

Fig. 1
Fig. 1
Trial flow. *In trial 1 the four cases lost to follow-up at d28 include one P. vivax infection at d28
Fig. 2
Fig. 2
Secondary outcomes in trial 1. Fever (a) and gametocyte (b) clearance and haemoglobin recovery (c) in the two arms of trial 1 (AS + SP vs. DHA-piperaquine)
Fig. 3
Fig. 3
Molecular data. The proportion of wild-type and mutant isolates is shown for five loci in each of dhfr and dhps (all trials) and the K13 propeller region (trial 3 only). ac refer to the three separate trials undertaken, as indicated above each graph

References

    1. Faulde MK, Hoffmann R, Fazilat KM, Hoerauf A. Malaria reemergence in northern Afghanistan. Emerg Infect Dis. 2007;13:1402–1404. doi: 10.3201/eid1309.061325.
    1. Dhir SL, Rahim A. Malaria and its control in Afghanistan (1950–1954) Indian J Malariol. 1957;11:73–126.
    1. Kolaczinski J, Graham K, Fahim A, Brooker S, Rowland M. Malaria control in Afghanistan: progress and challenges. Lancet. 2005;365:1506–1512. doi: 10.1016/S0140-6736(05)66423-9.
    1. Brooker S, Leslie T, Kolaczinski K, Mohsen E, Mehboob N, Saleheen S, et al. Spatial epidemiology of Plasmodium vivax Afghanistan. Emerg Infect Dis. 2006;12:1600–1602. doi: 10.3201/eid1210.060051.
    1. Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378. doi: 10.1186/1475-2875-10-378.
    1. Rab MA, Freeman TW, Durrani N, de Poerck D, Rowland MW. Resistance of Plasmodium falciparum malaria to chloroquine is widespread in eastern Afghanistan. Ann Trop Med Parasitol. 2001;95:41–46. doi: 10.1080/00034980020035906.
    1. Durrani N, Leslie T, Rahim S, Graham K, Ahmad F, Rowland M. Efficacy of combination therapy with artesunate plus amodiaquine compared to monotherapy with chloroquine, amodiaquine or sulfadoxine-pyrimethamine for treatment of uncomplicated Plasmodium falciparum in Afghanistan. Trop Med Int Health. 2005;10:521–529. doi: 10.1111/j.1365-3156.2005.01429.x.
    1. Rowland M, Durrani N, Hewitt S, Sondorp E. Resistance of falciparum malaria to chloroquine and sulfadoxine-pyrimethamine in Afghan refugee settlements in western Pakistan: surveys by the general health services using a simplified in vivo test. Trop Med Int Health. 1997;2:1049–1056. doi: 10.1046/j.1365-3156.1997.d01-185.x.
    1. Howard N, Durrani N, Sanda S, Beshir K, Hallett R, Rowland M. Clinical trial of extended-dose chloroquine for treatment of resistant falciparum malaria among Afghan refugees in Pakistan. Malar J. 2011;10:171. doi: 10.1186/1475-2875-10-171.
    1. Beshir K, Sutherland CJ, Merinopoulos I, Durrani N, Leslie T, Rowland M, et al. Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76. Antimicrob Agents Chemother. 2010;54:3714–3716. doi: 10.1128/AAC.00358-10.
    1. Ezard N, Nellepalli P, Asha AW. Sulfadoxine-pyrimethamine remains efficacious against uncomplicated, Plasmodium falciparum malaria in north-eastern Afghanistan. Ann Trop Med Parasitol. 2004;98:85–88. doi: 10.1179/000349804225003019.
    1. Faulde MK, Hoffmann R, Fazilat KM, Hoerauf A. Epidemiology of Plasmodium falciparum and P. vivax malaria endemic in northern Afghanistan. J Egypt Soc Parasitol. 2008;38:679–692.
    1. WHO Severe and complicated malaria. Trans R Soc Trop Med Hyg. 2000;94(Suppl 1):1–90.
    1. WHO . Guidelines for the treatment of malaria. Geneva: World Health Organization; 2006.
    1. WHO . Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
    1. Stepniewska K, White NJ. Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria. Malar J. 2006;5:127. doi: 10.1186/1475-2875-5-127.
    1. Malm M, Lindegardh N, Bergqvist Y. Automated solid-phase extraction method for the determination of piperaquine in capillary blood applied onto sampling paper by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;809:43–49. doi: 10.1016/j.jchromb.2004.05.032.
    1. Lindegardh N, Annerberg A, White NJ, Day NP. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;862:227–236. doi: 10.1016/j.jchromb.2007.12.011.
    1. Green MD, Mount DL, Nettey H. High-performance liquid chromatographic assay for the simultaneous determination of sulfadoxine and pyrimethamine from whole blood dried onto filter paper. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;767:159–162. doi: 10.1016/S0378-4347(01)00547-3.
    1. Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown KN, et al. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg. 1999;93:369–374. doi: 10.1016/S0035-9203(99)90120-7.
    1. Duraisingh MT, Curtis J, Warhurst DC. Plasmodium falciparum: detection of polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes by PCR and restriction digestion. Exp Parasitol. 1998;89:1–8. doi: 10.1006/expr.1998.4274.
    1. Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol. 2000;108:13–23. doi: 10.1016/S0166-6851(00)00201-2.
    1. Awab GR, Pukrittayakamee S, Jamornthanyawat N, Yamin F, Dondorp AM, Day NP, et al. Prevalence of antifolate resistance mutations in Plasmodium falciparum isolates in Afghanistan. Malar J. 2013;12:96. doi: 10.1186/1475-2875-12-96.
    1. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–55. doi: 10.1038/nature12876.
    1. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–421. doi: 10.1016/S1473-3099(15)70032-0.
    1. Khatoon L, Baliraine FN, Bonizzoni M, Malik SA, Yan G. Prevalence of antimalarial drug resistance mutations in Plasmodium vivax and P. falciparum from a malaria-endemic area of Pakistan. Am J Trop Med Hyg. 2009;81:525–528.
    1. Ghanchi NK, Ursing J, Beg MA, Veiga MI, Jafri S, Martensson A. Prevalence of resistance associated polymorphisms in Plasmodium falciparum field isolates from southern Pakistan. Malar J. 2011;10:18. doi: 10.1186/1475-2875-10-18.
    1. Khattak AA, Venkatesan M, Jacob CG, Artimovich EM, Nadeem MF, Nighat F, et al. A comprehensive survey of polymorphisms conferring anti-malarial resistance in Plasmodium falciparum across Pakistan. Malar J. 2013;12:300. doi: 10.1186/1475-2875-12-300.
    1. Ahmed A, Bararia D, Vinayak S, Yameen M, Biswas S, Dev V, et al. Plasmodium falciparum isolates in India exhibit a progressive increase in mutations associated with sulfadoxine-pyrimethamine resistance. Antimicrob Agents Chemother. 2004;48:879–889. doi: 10.1128/AAC.48.3.879-889.2004.
    1. Srivastava P, Ratha J, Shah NK, Mishra N, Anvikar AR, Sharma SK, et al. A clinical and molecular study of artesunate + sulphadoxine-pyrimethamine in three districts of central and eastern India. Malar J. 2013;12:247. doi: 10.1186/1475-2875-12-247.
    1. Zakeri S, Farahani MS, Afsharpad M, Salehi M, Raeisi A, Djadid ND. High prevalence of the 437G mutation associated with sulfadoxine resistance among Plasmodium falciparum clinical isolates from Iran, three years after the introduction of sulfadoxine-pyrimethamine. Int J Infect Dis. 2010;14(Suppl 3):e123–e128. doi: 10.1016/j.ijid.2009.11.035.
    1. Rouhani M, Zakeri S, Pirahmadi S, Raeisi A, Djadid ND. High prevalence of pfdhfr-pfdhps triple mutations associated with anti-malarial drugs resistance in Plasmodium falciparum isolates seven years after the adoption of sulfadoxine-pyrimethamine in combination with artesunate as first-line treatment in Iran. Infect Genet Evol. 2015;1:183–189. doi: 10.1016/j.meegid.2015.01.020.
    1. Mishra N, Kaitholia K, Srivastava B, Shah NK, Narayan JP, Dev V, et al. Declining efficacy of artesunate plus sulphadoxine-pyrimethamine in northeastern India. Malar J. 2014;13:284. doi: 10.1186/1475-2875-13-284.
    1. Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–431. doi: 10.1126/science.1260867.
    1. Nosten F, van Vugt M, Price R, Luxemburger C, Thway KL, Brockman A, et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet. 2000;356:297–302. doi: 10.1016/S0140-6736(00)02505-8.
    1. White NJ. Antimalarial drug resistance. J Clin Invest. 2004;113:1084–1092. doi: 10.1172/JCI21682.

Source: PubMed

3
订阅