Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions

Louise A Kelly, Duncan Ge McMillan, Alexandra Anderson, Morgan Fippinger, Gunnar Fillerup, Jane Rider, Louise A Kelly, Duncan Ge McMillan, Alexandra Anderson, Morgan Fippinger, Gunnar Fillerup, Jane Rider

Abstract

Background: Few studies to date have directly compared the Actigraphs GT1M and the GT3X, it would be of tremendous value to know if these accelerometers give similar information about intensities of PA. Knowing if output is similar would have implications for cross-examination of studies. The purpose of the study was to assess the validity of the GT1M and the GT3X Actigraph accelerometers for the assessment of physical activity against oxygen consumption in laboratory conditions.

Methods: Forty-two college-aged participants aged 18-25 years wore the GT1M and the GT3X on their right hip during treadmill exercise at three different speeds, slow walking 4.8 km.h-1, fast walking 6.4 km.h-1, and running 9.7 km.h-1). Oxygen consumption was measured minute-by minute using a metabolic system. Bland-Altman plots were used to assess agreement between activity counts from the GT3X and GT1M, and correlations were assessed the ability of the accelerometers to assess physical activity.

Results: Bias for 4.8 km.h-1 was 2814.4 cpm (limits 1211.3 to 4417.4), for 6.4 km.h-1 was 3713.6 cpm (limits 1573.2 to 5854.0), and for 9.7 km.h-1 was-3811.2 cpm (limits 842.1 to 6780.3). Correlations between counts per minute for the GT1M and the GT3X were significantly correlated with VO2 (r = 0.881, p < 0.001; r = 0.810, p < 0.001 respectively).

Conclusion: The present study showed that both the GT1M and the GT3X accurately measure physical activity when compared to oxygen consumption.

Figures

Figure 1
Figure 1
Correlation of GT1M and VO2(L/min).
Figure 2
Figure 2
Correlation of GT3X and VO2 max (L/min).
Figure 3
Figure 3
Bland/Altman plot for GT1M and GT3X at slow walking.
Figure 4
Figure 4
Bland/Altman plot for GT1M and GT3X at fast walking.
Figure 5
Figure 5
Bland/Altman plot for GT1M and GT3X at Running.

References

    1. Eyler AA, Brownson RC, Bacak SJ, Housemann RA. The epidemiology of walking for physical activity in the United States. Med Sci Sports Exerc. 2003;35(9):1529–1536. doi: 10.1249/01.MSS.0000084622.39122.0C.
    1. Fitzhugh EC, Thompson DL. Leisure-time walking and compliance with ACSM/AHA aerobic-related physical activity recommendations: 1999-2004 NHANES. J Phys Act Health. 2009;6(4):393–402.
    1. Cain KL, Conway TL, Adams MA, Husak LE, Sallis JF. Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int J Behav Nutr Phys Act. 2013;25:10–51.
    1. Actigraph. Actilife users manual, 2008. 2008. Retrieved from .
    1. Actigraph. GT1M specifications, 2008. 2008. Retrieved from .
    1. Actigraph. GT1M specifications. Retrieved from
    1. Jackson DM, Reilly JJ, Kelly LA, Montgomery C, Grant S, Paton JY. Objectively measured physical activity in a representative sample of 3-to 4-year old children. Obes Res. 2003;11:420–425. doi: 10.1038/oby.2003.57.
    1. Reilly JJ, Jackson DM, Montgomery C, Kelly LA, Slater C, Grant S, Paton JY. Levels of total energy expenditure and physical activity in modern children. Lancet. 2004;363:211–212. doi: 10.1016/S0140-6736(03)15331-7.
    1. Kelly LA, Reilly JJ, Grant S, Paton JY. Low physical activity levels and high levels of sedentary behavior are characteristic of rural Irish primary school children. Ir Med J. 2005;98:138–141.
    1. Kelly LA, Reilly JJ, Fisher A, Montgomery C, Williamson A, McColl JH, Paton JY, Grant S. Effect of socio-economic status on objectively measured physical activity. Arch Dis Child. 2006;9:35–38.
    1. Reilly JJ, Kelly LA, Montgomery C, Williamson A, Fisher A, McColl JH, Lo Conte R, Paton JY, Grant S. Movement and activity glasgow intervention in children (MAGIC): cluster randomised controlled trial for the prevention of obesity. BMJ. 2006;333(7577):1041–1043. doi: 10.1136/bmj.38979.623773.55.
    1. Kelly LA, Reilly JJ, Jackson DM, Montgomery C, Grant S, Paton JY. Tracking of physical activity and sedentary behavior in young children. Pediatr Exerc Sci. 2007;19:51–60.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications: Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021.
    1. Sasaki JE, Dinesh J, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14:411–416. doi: 10.1016/j.jsams.2011.04.003.
    1. Brage S, Wedderkopp N, Franks PW, Anderson LB, Froberg K. Re-examination of validity and reliability of the CSA monitor in walking and running. Med Sci Sports and Exerc. 2003;35:1447–1454. doi: 10.1249/.
    1. Janz KF. Validation of the CSA accelerometer for assessing children’s physical activity. Med Sci Sports Exerc. 1994;26(3):369–375.
    1. Melanson EL Jr, Freedson PS. Validity of the computer science and applications, Inc. (CSA) activity monitor. Med Sci Sports Exerc. 1995;27(6):934–940.
    1. Bassett DR Jr. Validity and reliability issues in objective monitoring of physical activity. Res Q Exerc Sport. 2000;71(2 Suppl):S30–S36.
    1. Hendelman D, Miller K, Baggett C, Debold E, Freedson P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 2000;32(9 Suppl):S442–S449.
    1. Swartz AM, Strath SJ, Bassett DR Jr, O’Brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc. 2000;32(9 Suppl):S450–S456.
    1. King GA, Torres N, Potter C, Brooks TJ, Coleman KJ. Comparison of activity monitors to estimate energy cost of treadmill exercise. Med Sci Sports Exerc. 2004;36(7):1244–1251. doi: 10.1249/01.MSS.0000132379.09364.F8.
    1. Crouter SE, Churilla JR, Bassett DR Jr. Estimating energy expenditure using accelerometers. Eur J Appl Physiol. 2006;98(6):601–612. doi: 10.1007/s00421-006-0307-5.
    1. Crouter SE, Clowers KG, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 2006;100(4):1324–1331.
    1. Rothney MP, Brychta RJ, Meade NN, Chen KY, Buchowski MS. Validation of the ActiGraph two-regression model for predicting energy expenditure. Med Sci Sports Exerc. 2010;42(9):1785–1792. doi: 10.1249/MSS.0b013e3181d5a984.
    1. Crouter S, Kuffel E, Haas JD, Frongillo EA, Bassett DR Jr. Refined two-regression model for the ActiGraph accelerometer. Med Sci Sports Exerc. 2010;42(5):1029–1037. doi: 10.1249/MSS.0b013e3181c37458.
    1. Tudor-Locke C, Ainsworth BE, Thompson RW, Matthews CE. Comparison of pedometer and accelerometer measures of freeliving physical activity. Med Sci Sports Exerc. 2002;34(12):2045–2051. doi: 10.1097/00005768-200212000-00027.
    1. Le Masurier G, Tudor-Locke C. Comparison of pedometer and accelerometer accuracy under controlled conditions. Med Sci Sports Exerc. 2003;35(5):867–871. doi: 10.1249/01.MSS.0000064996.63632.10.
    1. Rothney MP, Apker GA, Song Y, Chen KY. Comparing the performance of three generations of ActiGraph accelerometers. J Appl Physiol. 2008;105(4):1091–1097. doi: 10.1152/japplphysiol.90641.2008.
    1. Chen KY, Bassett DR Jr. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(11 Suppl):S490–S500.
    1. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240. doi: 10.1136/bmj.320.7244.1240.
    1. Eslinger D, Mota J, Silva P, Welk G. Technical reliability assessment of the Actigraph GT1M accelerometer. Meas Phys Educ Exerc Sci. 2010;14(2):79–91. doi: 10.1080/10913671003715524.
    1. Santos-Lozano A, Marín PJ, Torres-Luque G, Ruiz JR, Lucía A. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34(6):787–790. doi: 10.1016/j.medengphy.2012.02.005.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310.
    1. Ayen TG, Montoye HJ. Estimation of energy expenditure with a simulated three-dimensional accelerometer. J Ambul Monit. 1988;1:293–301.
    1. Bouten CV, Van De Verboeket-Venne WP, Westerterp KR, Verduin M, Janssen JD. Daily physical activity assessment: comparison between movement registration and doubly labeled water. J Appl Physiol. 1996;81:1019–1026.
    1. Coleman KJ, Saelens BE, Wiedrich-Smith MD, Finn JD, Epstein LH. Relationships between Tritrac vectors, heart rate, and self-report in obese children. Med Sci Sports and Exerc. 1997;29:1535–1542. doi: 10.1097/00005768-199711000-00022.
    1. Eston RG, Rowlands AV, Ingledew DK. Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol. 1998;84:362–371.
    1. Trost RG, Ward DS, Moorhea SM, Watson PD, Riner W, Burtke JR. Validity of the CSA activity monitor in children. Med Sci Sports and Exerc. 1998;30:629–633. doi: 10.1097/00005768-199804000-00023.
    1. Kinnunen H, Tanskanen M, Kyröläinen H, Westerterp KR. Wrist-worn accelerometers in assessment of energy expenditure during intensive training. Physiol Meas. 2012;33:1841. doi: 10.1088/0967-3334/33/11/1841.
    1. Westerterp KR. Physical activity assessment with accelerometers. Int J Obes (Lond) 1999;23:S45–S49. doi: 10.1038/sj.ijo.0800883.
    1. Plasqui G, Joosen AM, Kester AD, Goris AH, Westerterp KR. Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res. 2005;13:1363–1369. doi: 10.1038/oby.2005.165.
    1. Howe CA, Staudenmayer JW, Freedson PS. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009;41:2199–2206. doi: 10.1249/MSS.0b013e3181aa3a0e.
    1. Welk GJ, Blair SN, Wood K, Jones S, Thompson RW. A comparative evaluation of three accelerometry-based physical activity monitors. Med Sci Sports Exerc. 2000;32:489–497. doi: 10.1097/00005768-200009001-00008.
    1. Hänggi JM, Philips LR, Rowlands AV. Validation of the GT3X Actigraph in children and comparison with the GT1M Actigraph. J Sci Med Sport. In press.
    1. Vanhelst J, Zunquin G, Theunynck D, Mikulovic J, Bui-Xuan G, Beghin L. Equivalence of accelerometer data for walking and running: treadmill versus on land. J Sports Sci. 2009;27(7):669–675. doi: 10.1080/02640410802680580.
    1. Rowlands A, Stone M, Eston R. Influence of speed and step frequency during walking and running on motion sensor output. Med Sci Sports and Exerc. 2007;39(4):716–27.0. doi: 10.1249/mss.0b013e318031126c.

Source: PubMed

3
订阅