Association between lipodystrophy and length of exposure to ARTs in adult HIV-1 infected patients in Montreal

Ahmad Alikhani, Helene Morin, Stephanie Matte, Pouriya Alikhani, Cécile Tremblay, Madeleine Durand, Ahmad Alikhani, Helene Morin, Stephanie Matte, Pouriya Alikhani, Cécile Tremblay, Madeleine Durand

Abstract

Background: The aim of this study was to establish the prevalence of lipodystrophy and its association to cumulative exposure to antiretroviral drugs.

Method: We conducted a cross sectional study in all HIV- infected patients attending the HIV clinic in the Centre hospitalier universitaire de Montréal (CHUM) with DEXA scan. Lipodystrophy was defined as a trunk/limb fat ratio ≥ 1.5. Association between cumulative exposure to antiretroviral (measured in years of use) with trunk/limb fat ratio (coded as a continuous variable) was assessed using univariate and multivariate linear regression for each antiretroviral drug with at least 40 exposed patients.

Results: One hundred sixty-six patients were included. Seventy-five percent were male, median age was 56 years, 67% were Caucasian. Overall, prevalence of lipodystrophy was 47%, with a mean trunk/limb fat ratio of 1.87, SD = 1.03, min = 0.6 and max = 5.87. Each 10-year increase in age and HIV infection duration was associated with an average increase of 0.24 and 0.34 for the trunk/limb fat ratio respectively. (p = 0.003, p = 0.002, respectively) Patients classified as lipodystrophic were more likely to be diabetic (50 vs. 28%, p = 0.07) and to have dyslipidemia (47 vs. 19%, p = 0.01). According to viral load at DEXA test, each one log increase was associated with less probability (0.7) of lipodystrophy. (p = 0.01) Among ARV drugs tested, there was an association between years of use of d4T, ritonavir and raltegravir and higher trunk/limb fat ratio (indicating more lipodystrophy) (p < 0.05).

Conclusion: Lipodystrophy is very common in HIV infected patients and is correlated with duration of some new antiretroviral drugs.

Keywords: Antiretroviral therapy; Dyslipidemia; HIV; Lipodystrophy; Risk factors.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Alves MD, Brites C, Sprinz E. HIV-associated lipodystrophy: a review from a Brazilian perspective. Ther Clin Risk Manag. 2014;10:559–566.
    1. Aboud M, Elgalib A, Pomeroy L, Panayiotakopoulos G, Skopelitis E, Kulasegaram R, et al. Cardiovascular risk evaluation and antiretroviral therapy effects in an HIV cohort: implications for clinical management: the CREATE 1 study. Int J Clin Pract. 2010;64(9):1252–1259. doi: 10.1111/j.1742-1241.2010.02424.x.
    1. Marins JR, Jamal LF, Chen SY, Barros MB, Hudes ES, Barbosa AA, et al. Dramatic improvement in survival among adult Brazilian AIDS patients. AIDS (London, England) 2003;17(11):1675–1682. doi: 10.1097/00002030-200307250-00012.
    1. Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013;173(8):614–622. doi: 10.1001/jamainternmed.2013.3728.
    1. Guaraldi G, Stentarelli C, Zona S, Santoro A. HIV-associated lipodystrophy: impact of antiretroviral therapy. Drugs. 2013;73(13):1431–1450. doi: 10.1007/s40265-013-0108-1.
    1. The epidemiology of HIV in Canada [Internet]. 2014.
    1. Domingo P, Gutierrez Mdel M, Gallego-Escuredo JM, Torres F, Mateo GM, Villarroya J, et al. Effects of switching from stavudine to raltegravir on subcutaneous adipose tissue in HIV-infected patients with HIV/HAART-associated lipodystrophy syndrome (HALS). A clinical and molecular study. PLoS One. 2014;9(2):e89088. doi: 10.1371/journal.pone.0089088.
    1. Dragovic G, Danilovic D, Dimic A, Jevtovic D. Lipodystrophy induced by combination antiretroviral therapy in HIV/AIDS patients: a Belgrade cohort study. Vojnosanit Pregl. 2014;71(8):746–750. doi: 10.2298/VSP121016022D.
    1. Miller J, Carr A, Emery S, Law M, Mallal S, Baker D, et al. HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV medicine. 2003;4(3):293–301. doi: 10.1046/j.1468-1293.2003.00159.x.
    1. Verolet CM, Delhumeau-Cartier C, Sartori M, Toma S, Zawadynski S, Becker M, et al. Lipodystrophy among HIV-infected patients: a cross-sectional study on impact on quality of life and mental health disorders. AIDS Res Ther. 2015;12:21. doi: 10.1186/s12981-015-0061-z.
    1. Sension M, Deckx H. Lipid metabolism and lipodystrophy in HIV-1-infected patients: the role played by nonnucleoside reverse transcriptase inhibitors. AIDS Rev. 2015;17(1):21–36.
    1. Purnell JQ, Zambon A, Knopp RH, Pizzuti DJ, Achari R, Leonard JM, et al. Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS (London, England) 2000;14(1):51–57. doi: 10.1097/00002030-200001070-00006.
    1. Tsiodras S, Mantzoros C, Hammer S, Samore M. Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy: a 5-year cohort study. Arch Intern Med. 2000;160(13):2050–2056. doi: 10.1001/archinte.160.13.2050.
    1. Degli Antoni A, Weimer LE, Fragola V, Giacometti A, Sozio F. A reduction grade of lipodystrophy and limited side effects after HAART regimen with Raltegravir, lamivudine, Darunavir and ritonavir in an HIV-1 infected patient after six years of antiretroviral therapy. West Indian Med J. 2015;64(3):291–293.
    1. Kumar NS, Shashibhushan J, Malappa VK, Vishwanatha H, Menon M. Lipodystrophy in human immunodeficiency virus (HIV) patients on highly active antiretroviral therapy (HAART) J Clin Diagn Res. 2015;9(7):OC05–OC08.
    1. Lichtenstein KA, Ward DJ, Moorman AC, Delaney KM, Young B, Palella FJ, Jr, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS (London, England) 2001;15(11):1389–1398. doi: 10.1097/00002030-200107270-00008.
    1. Martin A, Moore CL, Mallon PW, Hoy JF, Emery S, Belloso WH, et al. HIV lipodystrophy in participants randomised to lopinavir/ritonavir (LPV/r) +2-3 nucleoside/nucleotide reverse transcriptase inhibitors (N(t)RTI) or LPV/r + raltegravir as second-line antiretroviral therapy. PLoS One. 2013;8(10):e77138. doi: 10.1371/journal.pone.0077138.
    1. Beraldo RA, Vassimon HS, Aragon DC, Navarro AM, Albuquerque de Paula FJ, Foss-Freitas MC. Proposed ratios and cutoffs for the assessment of lipodystrophy in HIV-seropositive individuals. Eur J Clin Nutr. 2015;69(2):274–278. doi: 10.1038/ejcn.2014.149.
    1. HyLown Consulting LLC. Power and sample size Atlanta, GA2013–2018 [Available from: .
    1. Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet (London, England) 1999;353(9170):2093–2099. doi: 10.1016/S0140-6736(98)08468-2.
    1. de Waal R, Cohen K, Maartens G. Systematic review of antiretroviral-associated lipodystrophy: lipoatrophy, but not central fat gain, is an antiretroviral adverse drug reaction. PLoS One. 2013;8(5):e63623. doi: 10.1371/journal.pone.0063623.
    1. McComsey GA, Moser C, Currier J, Ribaudo HJ, Paczuski P, Dube MP, et al. Body composition changes after initiation of Raltegravir or protease inhibitors: ACTG A5260s. Clin Infect Dis. 2016;62(7):853–862. doi: 10.1093/cid/ciw017.
    1. Lake JE, McComsey GA, Hulgan TM, Wanke CA, Mangili A, Walmsley SL, et al. A randomized trial of Raltegravir replacement for protease inhibitor or non-nucleoside reverse transcriptase inhibitor in HIV-infected women with lipohypertrophy. AIDS Patient Care STDs. 2012;26(9):532–540. doi: 10.1089/apc.2012.0135.

Source: PubMed

3
订阅