Validity of an iPhone App to Detect Prefrailty and Sarcopenia Syndromes in Community-Dwelling Older Adults: The Protocol for a Diagnostic Accuracy Study

Alessio Montemurro, Juan D Ruiz-Cárdenas, María Del Mar Martínez-García, Juan J Rodríguez-Juan, Alessio Montemurro, Juan D Ruiz-Cárdenas, María Del Mar Martínez-García, Juan J Rodríguez-Juan

Abstract

Prefrailty and sarcopenia in combination are more predictive of mortality than either condition alone. Early detection of these syndromes determines the prognosis of health-related adverse events since both conditions can be reversed through appropriate interventions. Nowadays, there is a lack of cheap, portable, rapid, and easy-to-use tools for detecting prefrailty and sarcopenia in combination. The aim of this study is to validate an iPhone App to detect prefrailty and sarcopenia syndromes in community-dwelling older adults. A diagnostic test accuracy study will include at least 400 participants aged 60 or over without cognitive impairment and physical disability recruited from elderly social centers of Murcia (Spain). Sit-to-stand muscle power measured through a slow-motion video analysis mobile application will be considered as the index test in combination with muscle mass (calf circumference or upper mid-arm circumference). Frailty syndrome (Fried's Phenotype) and sarcopenia (EWGSOP2) will both be considered as reference standards. Sensibility, specificity, positive and negative predictive values and likelihood ratios will be calculated as well as the area under the curve of the receiver operating characteristic. This mobile application will add the benefit for screening large populations in short time periods within a field-based setting, where space and technology are often constrained (NCT05148351).

Keywords: aging; chair rise; frail; functional capacity; muscle power; sarcopenia; sit-to-stand; smartphone.

Conflict of interest statement

The last author of this article is the creator of the app and may benefit financially from purchases of the App. Nevertheless, to guarantee the objectivity of the results, the first author will be blinded to the prefrailty and sarcopenia status of the subjects and will perform data analysis from the app. The remaining authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
User interface of the App. White dot represents the reflective marker placed on the greater trochanter while the subject is in a sitting position (top panel), at the beginning of the vertical movement when the reflective marker crosses the first horizontal grip line on the screen (middle panel), and at the end of the vertical movement, when the reflective marker achieves the highest point (lower panel).

References

    1. Ma L. Current Situation of Frailty Screening Tools for Older Adults. J. Nutr. Health Aging. 2019;23:111–118. doi: 10.1007/s12603-018-1123-4.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. Valenzuela P.L., Castillo-García A., Morales J.S., Izquierdo M., Serra-Rexach J.A., Santos-Lozano A., Lucia A. Physical Exercise in the Oldest Old. Compr. Physiol. 2019;9:1281–1304. doi: 10.1002/cphy.c190002.
    1. Muscedere J. Editorial: The Need to Implement Frailty in the International Classification of Disease (ICD) J. Frailty Aging. 2020;9:2–3. doi: 10.14283/jfa.2020.2.
    1. Petermann-Rocha F., Balntzi V., Gray S.R., Lara J., Ho F.K., Pell J.P., Celis-Morales C. Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle. 2022;13:86–99. doi: 10.1002/jcsm.12783.
    1. Santos-Eggimann B., Cuénoud P., Spagnoli J., Junod J. Prevalence of Frailty in Middle-Aged and Older Community-Dwelling Europeans Living in 10 Countries. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:675–681. doi: 10.1093/gerona/glp012.
    1. Thompson M.Q., Yu S., Tucker G.R., Adams R.J., Cesari M., Theou O., Visvanathan R. Frailty and Sarcopenia in Combination Are More Predictive of Mortality than Either Condition Alone. Maturitas. 2021;144:102–107. doi: 10.1016/j.maturitas.2020.11.009.
    1. Mori H., Tokuda Y. Differences and Overlap between Sarcopenia and Physical Frailty in Older Community-Dwelling Japanese. Asia Pac. J. Clin. Nutr. 2019;28:157–165. doi: 10.6133/apjcn.201903_28(1).0021.
    1. Davies B., García F., Ara I., Artalejo F.R., Rodriguez-Mañas L., Walter S. Relationship Between Sarcopenia and Frailty in the Toledo Study of Healthy Aging: A Population Based Cross-Sectional Study. J. Am. Med. Dir. Assoc. 2018;19:282–286. doi: 10.1016/j.jamda.2017.09.014.
    1. Davies B., Walter S., Rodríguez-Laso A., Carnicero Carreño J.A., García-García F.J., Álvarez-Bustos A., Rodríguez-Mañas L. Differential Association of Frailty and Sarcopenia With Mortality and Disability: Insight Supporting Clinical Subtypes of Frailty. J. Am. Med. Dir. Assoc. 2022 doi: 10.1016/j.jamda.2022.03.013. in press.
    1. Knudtson M.D., Klein B.E.K., Klein R. Biomarkers of Aging and Falling: The Beaver Dam Eye Study. Arch. Gerontol. Geriatr. 2009;49:22–26. doi: 10.1016/j.archger.2008.04.006.
    1. Millor N., Lecumberri P., Gomez M., Martinez A., Martinikorena J., Rodriguez-Manas L., Garcia-Garcia F.J., Izquierdo M. Gait Velocity and Chair Sit-Stand-Sit Performance Improves Current Frailty-Status Identification. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2017;25:2018–2025. doi: 10.1109/TNSRE.2017.2699124.
    1. Kera T., Kawai H., Takahashi J., Hirano H., Watanabe Y., Fujiwara Y., Ihara K., Kim H., Obuchi S. Development of a Screening Formula for Sarcopenia Using Ground Reaction Force during Sit-to-Stand Motion. Gait Posture. 2022;93:177–182. doi: 10.1016/j.gaitpost.2022.02.001.
    1. Ruiz-Cárdenas J.D., Rodríguez-Juan J.J., Smart R.R., Jakobi J.M., Jones G.R. Validity and Reliability of an IPhone App to Assess Time, Velocity and Leg Power during a Sit-to-Stand Functional Performance Test. Gait Posture. 2018;59:261–266. doi: 10.1016/j.gaitpost.2017.10.029.
    1. Orange S.T., Metcalfe J.W., Liefeith A., Jordan A.R. Validity of Various Portable Devices to Measure Sit-to-Stand Velocity and Power in Older Adults. Gait Posture. 2020;76:409–414. doi: 10.1016/j.gaitpost.2019.12.003.
    1. Ishii S., Tanaka T., Shibasaki K., Ouchi Y., Kikutani T., Higashiguchi T., Obuchi S.P., Ishikawa-Takata K., Hirano H., Kawai H., et al. Development of a Simple Screening Test for Sarcopenia in Older Adults. Geriatr. Gerontol. Int. 2014;14((Suppl. S1)):93–101. doi: 10.1111/ggi.12197.
    1. Landi F., Onder G., Russo A., Liperoti R., Tosato M., Martone A.M., Capoluongo E., Bernabei R. Calf Circumference, Frailty and Physical Performance among Older Adults Living in the Community. Clin. Nutr. Edinb. Scotl. 2014;33:539–544. doi: 10.1016/j.clnu.2013.07.013.
    1. Bossuyt P.M., Reitsma J.B., Bruns D.E., Gatsonis C.A., Glasziou P.P., Irwig L., Lijmer J.G., Moher D., Rennie D., de Vet H.C.W., et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. BMJ. 2015;351:h5527. doi: 10.1136/bmj.h5527.
    1. Hu F.-J., Liu H., Liu X.-L., Jia S.-L., Hou L.-S., Xia X., Dong B.-R. Mid-Upper Arm Circumference as an Alternative Screening Instrument to Appendicular Skeletal Muscle Mass Index for Diagnosing Sarcopenia. Clin. Interv. Aging. 2021;16:1095–1104. doi: 10.2147/CIA.S311081.
    1. Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., Seeman T., Tracy R., Kop W.J., Burke G., et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001;56:M146–M156. doi: 10.1093/gerona/56.3.M146.
    1. Ruiz-Comellas A., Pera G., Baena Díez J.M., Mundet Tudurí X., Alzamora Sas T., Elosua R., Torán Monserrat P., Heras A., Forés Raurell R., Fusté Gamisans M., et al. Validation of a Spanish Short Version of the Minnesota Leisure Time Physical Activity Questionnaire (VREM) Rev. Esp. Salud Publica. 2012;86:495–508. doi: 10.4321/S1135-57272012000500004.
    1. Sergi G., De Rui M., Veronese N., Bolzetta F., Berton L., Carraro S., Bano G., Coin A., Manzato E., Perissinotto E. Assessing Appendicular Skeletal Muscle Mass with Bioelectrical Impedance Analysis in Free-Living Caucasian Older Adults. Clin. Nutr. Edinb. Scotl. 2015;34:667–673. doi: 10.1016/j.clnu.2014.07.010.
    1. Guralnik J.M., Simonsick E.M., Ferrucci L., Glynn R.J., Berkman L.F., Blazer D.G., Scherr P.A., Wallace R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994;49:M85–M94. doi: 10.1093/geronj/49.2.M85.
    1. Bujang M.A., Adnan T.H. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis. J. Clin. Diagn. Res. JCDR. 2016;10:YE01–YE06. doi: 10.7860/JCDR/2016/18129.8744.
    1. Schenkman M., Riley P.O., Pieper C. Sit to Stand from Progressively Lower Seat Heights -- Alterations in Angular Velocity. Clin. Biomech. Bristol Avon. 1996;11:153–158. doi: 10.1016/0268-0033(95)00060-7.
    1. Kuo Y.-L. The Influence of Chair Seat Height on the Performance of Community-Dwelling Older Adults’ 30-Second Chair Stand Test. Aging Clin. Exp. Res. 2013;25:305–309. doi: 10.1007/s40520-013-0041-x.
    1. Weiner D.K., Long R., Hughes M.A., Chandler J., Studenski S. When Older Adults Face the Chair-Rise Challenge. A Study of Chair Height Availability and Height-Modified Chair-Rise Performance in the Elderly. J. Am. Geriatr. Soc. 1993;41:6–10. doi: 10.1111/j.1532-5415.1993.tb05939.x.
    1. Lindemann U., Claus H., Stuber M., Augat P., Muche R., Nikolaus T., Becker C. Measuring Power during the Sit-to-Stand Transfer. Eur. J. Appl. Physiol. 2003;89:466–470. doi: 10.1007/s00421-003-0837-z.
    1. Kralj A., Jaeger R.J., Munih M. Analysis of Standing up and Sitting down in Humans: Definitions and Normative Data Presentation. J. Biomech. 1990;23:1123–1138. doi: 10.1016/0021-9290(90)90005-N.
    1. Stevermer C.A., Gillette J.C. Kinematic and Kinetic Indicators of Sit-to-Stand. J. Appl. Biomech. 2016;32:7–15. doi: 10.1123/jab.2014-0189.

Source: PubMed

3
订阅