Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial

A Blackman, G D Foster, G Zammit, R Rosenberg, L Aronne, T Wadden, B Claudius, C B Jensen, E Mignot, A Blackman, G D Foster, G Zammit, R Rosenberg, L Aronne, T Wadden, B Claudius, C B Jensen, E Mignot

Abstract

Background: Obesity is strongly associated with prevalence of obstructive sleep apnea (OSA), and weight loss has been shown to reduce disease severity.

Objective: To investigate whether liraglutide 3.0 mg reduces OSA severity compared with placebo using the primary end point of change in apnea-hypopnea index (AHI) after 32 weeks. Liraglutide's weight loss efficacy was also examined.

Subjects/methods: In this randomized, double-blind trial, non-diabetic participants with obesity who had moderate (AHI 15-29.9 events h(-1)) or severe (AHI ⩾30 events h(-1)) OSA and were unwilling/unable to use continuous positive airway pressure therapy were randomized for 32 weeks to liraglutide 3.0 mg (n=180) or placebo (n=179), both as adjunct to diet (500 kcal day(-1) deficit) and exercise. Baseline characteristics were similar between groups (mean age 48.5 years, males 71.9%, AHI 49.2 events h(-1), severe OSA 67.1%, body weight 117.6 kg, body mass index 39.1 kg m(-2), prediabetes 63.2%, HbA1c 5.7%).

Results: After 32 weeks, the mean reduction in AHI was greater with liraglutide than with placebo (-12.2 vs -6.1 events h(-1), estimated treatment difference: -6.1 events h(-1) (95% confidence interval (CI), -11.0 to -1.2), P=0.0150). Liraglutide produced greater mean percentage weight loss compared with placebo (-5.7% vs -1.6%, estimated treatment difference: -4.2% (95% CI, -5.2 to -3.1%), P<0.0001). A statistically significant association between the degree of weight loss and improvement in OSA end points (P<0.01, all) was demonstrated post hoc. Greater reductions in glycated hemoglobin (HbA1c) and systolic blood pressure (SBP) were seen with liraglutide versus placebo (both P<0.001). The safety profile of liraglutide 3.0 mg was similar to that seen with doses ⩽1.8 mg.

Conclusions: As an adjunct to diet and exercise, liraglutide 3.0 mg was generally well tolerated and produced significantly greater reductions than placebo in AHI, body weight, SBP and HbA1c in participants with obesity and moderate/severe OSA. The results confirm that weight loss improves OSA-related parameters.

Trial registration: ClinicalTrials.gov NCT01557166.

Conflict of interest statement

Dr Blackman: consultant/advisory board participant for Novo Nordisk, Merck Canada, Valeant Canada, Paladin Labs Inc. Dr Foster: at the time of the study was a scientific advisory board participant for Con Agra Foods, United Health Group and Tate and Lyle, and a consultant to Eisai and Novo Nordisk; currently employed by Weight Watchers International. Dr Zammit: consultant for Acorda, Actelion, Alexza, Arena, Aventis, Biovail, Boehringer-Ingelheim, Cephalon, Elan, Eli Lilly, Evotec, Forest, Glaxo Smith Kline, Jazz, King Pharmaceuticals, Ligand, McNeil, Merck, Neurocrine Biosciences, Organon, Pfizer, Purdue, Renovis, Sanofi-Aventis, Select Comfort, Sepracor, Shire, Somnus, Takeda Pharmaceuticals, Vela, Wyeth; grants/research support from Abbott, Abbvie, Actelion, Ancile, Apnex, Arena, Astra-Zeneca, Aventis, Banyu, Biomarin, BMS, Catalyst, Cephalon Inc., CHDI, Elan, Epix, Eisai, Elminda, Evotec, Forest, Galderma, Genentech, Gilead, Glaxo Smith Kline, Gilead, H. Lundbeck A/S, Janssen, Johnson & Johnson, King, Merck and Co., National Institute of Health (NIH), Neurim, Neurocrine Biosciences, Naurex, Neurim, Neurogen, Novo Nordisk, Organon, Orphan Medical, Otsuka, Pfizer, Predix, Respironics, Saladax, Sanofi-Aventis, Sanofi-Synthelabo, Schering-Plough, Sepracor, Sunovion, Shire, Somaxon, Takeda Pharmaceuticals North America, Targacept, Teva, Thymon, Transcept, UCB Pharma, Ultragenyx, Predix, Vanda, Wyeth-Ayerst Research; honoraria received from Neurocrine Biosciences, King Pharmaceuticals, McNeil, Sanofi-Aventis, Sanofi-Synthelabo, Sepracor, Takeda Pharmaceuticals, Vela Pharmaceuticals, Wyeth-Ayerst Research; ownership interest in Clinilabs, Inc., Clinilabs IPA, Inc., Home Sleep and Respiratory Care, Nationwide Sleep Testing. Dr Rosenberg: received research grant support from Merck, Novo Nordisk, Pfizer, Teva, Jazz Pharmaceuticals, Sunovion Pharmaceuticals and Philips-Respironics. Dr Aronne: advisory board member for Myos Corporation; consultant, speaker, advisor, or received research support from Aspire Bariatrics Inc., Eisai, Ethicon Endo-Surgery Inc., GlaxoSmithKline Consumer Healthcare LP, GI Dynamics, Novo Nordisk, Pfizer, Takeda Pharmaceuticals, Vivus Inc., Zafgen Inc.; ownership interest in Myos Corporation and BMIQ. Dr Wadden: advisory board participant for Orexigen Pharmaceuticals, Inc., Novo Nordisk, Nutrisystem, and Shire Pharmaceuticals, with research support (to the University of Pennsylvania) from the first three companies. Dr Claudius: employee of Novo Nordisk and owns company stock. Dr Jensen: employee of Novo Nordisk and owns company stock. Dr Mignot: advisory board member, consultant for and research support from Jazz Pharmaceuticals; consultant for and research grant from Novo Nordisk; consultant for Reset Pharmaceuticals and Merck; expert witness for FTC.

Figures

Figure 1
Figure 1
Trial design. EOT, end of treatment; FU, follow-up.
Figure 2
Figure 2
Trial flow. Participants could be ineligible for trial enrollment because of more than one inclusion/exclusion criterion. *Participants did not receive any trial drug and withdrew from the trial. **Non-compliance with the trial protocol included, but was not limited to, incorrect handling of trial product, non-compliance to visit schedule and dietary advice and non-completion of trial-related questionnaires.
Figure 3
Figure 3
Change in AHI and body weight over 32 weeks of treatment and the relationship between weight loss and change in AHI. (a) Change in AHI during the treatment period. (b) Change in body weight during the treatment period. (c) Relationship between weight loss and change in AHI. (a, b) Data are observed means±s.e. from the full analysis set (FAS). The last observation carried forward (LOCF) value is shown at week 32. In c, data are mean±s.e. from the FAS, LOCF. Weight gain or loss category represents the change in body weight (%) from baseline after 32 weeks of treatment. PSG assessments were performed at weeks –1 (baseline), 12 and 32. For PSG-derived parameters (that is, AHI), participants without any post-baseline PSG assessments were excluded from the analyses. For the body weight parameter, participants without any post-baseline measurements were excluded from the analyses; in addition, participants without baseline measurements were excluded from the change from baseline analyses. N, number of participants; n, number of participants in each weight loss category; WG, weight gain; WL, weight loss.
Figure 4
Figure 4
Changes in PSG, quality of life and cardiometabolic end points after 32 weeks of treatment. (a) Changes in PSG and quality of life end points. (b) Changes in cardiometabolic end points. Forest plots show estimated treatment differences (ETDs)/odds ratios and 95% CIs. Data are from the full analysis set (last observation carried forward (LOCF)). Data at baseline are mean±s.d. For PSG-derived parameters, participants without any post-baseline PSG assessments were excluded from the analyses. For quality of life and cardiometabolic parameters, participants without any post-baseline measurements were excluded from the analyses; in addition, participants without baseline measurements were excluded from the change from baseline analyses. Improvement/worsening refer to the changes from baseline with liraglutide 3.0 mg relative to those with placebo. DBP, diastolic blood pressure; ESS, Epworth Sleepiness Scale; FPG, fasting plasma glucose; I, improvement; ODI, oxygen desaturation index; SpO2, oxygen saturation; WASO, wake time after sleep onset.

References

    1. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 2002; 165: 1217–1239.
    1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 2013; 177: 1006–1014.
    1. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 2000; 283: 1829–1836.
    1. Shamsuzzaman AS, Gersh BJ, Somers VK. Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA 2003; 290: 1906–1914.
    1. Tuomilehto H, Seppa J, Uusitupa M. Obesity and obstructive sleep apnea - clinical significance of weight loss. Sleep Med Rev 2012; 17: 321–329.
    1. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 2008; 31: 1071–1178.
    1. Young T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. JAMA 2004; 291: 2013–2016.
    1. Young T, Peppard PE, Taheri S. Excess weight and sleep-disordered breathing. J Appl Physiol (1985) 2005; 99: 1592–1599.
    1. Lindberg E, Gislason T. Epidemiology of sleep-related obstructive breathing. Sleep Med Rev 2000; 4: 411–433.
    1. Pillar G, Shehadeh N. Abdominal fat and sleep apnea: the chicken or the egg? Diabetes Care 2008; 31 (Suppl 2): S303–S309.
    1. Foster GD, Borradaile KE, Sanders MH, Millman R, Zammit G, Newman AB et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: the Sleep AHEAD study. Arch Intern Med 2009; 169: 1619–1626.
    1. Johansson K, Neovius M, Lagerros YT, Harlid R, Rossner S, Granath F et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. BMJ 2009; 339: b4609.
    1. Kuna ST, Reboussin DM, Borradaile KE, Sanders MH, Millman RP, Zammit G et al. Long-term effect of weight loss on obstructive sleep apnea severity in obese patients with type 2 diabetes. Sleep 2013; 36: 641–649A.
    1. Tuomilehto HP, Seppa JM, Partinen MM, Peltonen M, Gylling H, Tuomilehto JO et al. Lifestyle intervention with weight reduction: first-line treatment in mild obstructive sleep apnea. Am J Respir Crit Care Med 2009; 179: 320–327.
    1. Yee BJ, Phillips CL, Banerjee D, Caterson I, Hedner JA, Grunstein RR. The effect of sibutramine-assisted weight loss in men with obstructive sleep apnoea. Int J Obes (Lond) 2007; 31: 161–168.
    1. Tuomilehto H, Seppa J, Uusitupa M, Tuomilehto J, Gylling H. Weight reduction and increased physical activity to prevent the progression of obstructive sleep apnea: a 4-year observational postintervention follow-up of a randomized clinical trial. [corrected]. JAMA Intern Med 2013; 173: 929–930.
    1. Tuomilehto H, Seppa J, Uusitupa M, Peltonen M, Martikainen T, Sahlman J et al. The impact of weight reduction in the prevention of the progression of obstructive sleep apnea: an explanatory analysis of a 5-year observational follow-up trial. Sleep Med 2014; 15: 329–335.
    1. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 2009; 5: 263–276.
    1. Qaseem A, Holty JE, Owens DK, Dallas P, Starkey M, Shekelle P. Management of obstructive sleep apnea in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2013; 159: 471–483.
    1. Weaver TE, Grunstein RR. Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc 2008; 5: 173–178.
    1. Blonde L, Russell-Jones D. The safety and efficacy of liraglutide with or without oral antidiabetic drug therapy in type 2 diabetes: an overview of the LEAD 1-5 studies. Diabetes Obes Metab 2009; 11 (Suppl 3): 26–34.
    1. Saxenda (liraglutide), U.S. Prescribing Information. January 2015. Available at (accessed 16 July 2015).
    1. Saxenda Canada Product Monograph. Available at (accessed 17 July 2015).
    1. Summary of Product Characteristics, Saxenda. Available at (accessed 16 July 2015).
    1. van Can J, Sloth B, Jensen CB, Flint A, Blaak EE, Saris WH. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes (Lond) 2013; 38: 784–793.
    1. World Medical Association. Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects. Last amended by the 59th WMA Assembly, Seoul, October 2008. Available at (accessed 16 July 2015).
    1. International Conference on Harmonisation. ICH Harmonised Tripartite Guideline. Good Clinical Practice. 01-May-1996. Available at (accessed 16 July 2015).
    1. FAO/WHO/UNU. Human energy requirements. Report of a joint FAO/WHO/UNU expert consultation. FAO: food and nutrition technical report series 1. Rome: FAO/WHO/UNU; 2004. Available at (accessed 16 July 2015).
    1. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Available at (accessed 16 July 2015).
    1. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991; 14: 540–545.
    1. Weaver TE, Laizner AM, Evans LK, Maislin G, Chugh DK, Lyon K et al. An instrument to measure functional status outcomes for disorders of excessive sleepiness. Sleep 1997; 20: 835–843.
    1. Ware JE, Kosinski M, Dewey JE. How to Score Version Two of the SF-36 Health Survey. QualityMetric: Lincoln, RI, USA, 2001.
    1. American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care 2010; 33 (Suppl 1): S11–S61.
    1. Dixon JB, Schachter LM, O'Brien PE, Jones K, Grima M, Lambert G et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA 2012; 308: 1142–1149.
    1. Winslow DH, Bowden CH, DiDonato KP, McCullough PA. A randomized, double-blind, placebo-controlled study of an oral, extended-release formulation of phentermine/topiramate for the treatment of obstructive sleep apnea in obese adults. Sleep 2012; 35: 1529–1539.
    1. Astrup A, Rossner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 2009; 374: 1606–1616.
    1. Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean ME et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond) 2012; 36: 843–854.
    1. Grossman E. Blood pressure: the lower, the better: the con side. Diabetes Care 2011; 34 (Suppl 2): S308–S312.
    1. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913.
    1. Diamant M, Van Gaal L, Stranks S, Northrup J, Cao D, Taylor K et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet 2010; 375: 2234–2243.
    1. Dungan KM, Povedano ST, Forst T, Gonzalez JG, Atisso C, Sealls W et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial. Lancet 2014; 384: 1349–1357.
    1. Chandra S, Sica AL, Wang J, Lakticova V, Greenberg HE. Respiratory effort-related arousals contribute to sympathetic modulation of heart rate variability. Sleep Breath 2013; 17: 1193–1200.
    1. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 2008; 118: 1080–1111.
    1. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Lau D et al. A ransomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med 2015; 373: 11–22.
    1. Novo Nordisk. company announcement, 2016. Available at. (accessed 8 April 2016).
    1. Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes (Lond) 2013; 37: 1443–1451.
    1. Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374: 39–47.
    1. Buse JB, Nauck M, Forst T, Sheu WH, Shenouda SK, Heilmann CR et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet 2013; 381: 117–124.

Source: PubMed

3
订阅