Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients

Kyle J Gunnerson, Melissa Saul, Shui He, John A Kellum, Kyle J Gunnerson, Melissa Saul, Shui He, John A Kellum

Abstract

Introduction: Acid-base abnormalities are common in the intensive care unit (ICU). Differences in outcome exist between respiratory and metabolic acidosis in similar pH ranges. Some forms of metabolic acidosis (for example, lactate) seem to have worse outcomes than others (for example, chloride). The relative incidence of each type of disorder is unknown. We therefore designed this study to determine the nature and clinical significance of metabolic acidosis in critically ill patients.

Methods: An observational, cohort study of critically ill patients was performed in a tertiary care hospital. Critically ill patients were selected on the clinical suspicion of the presence of lactic acidosis. The inpatient mortality of the entire group was 14%, with a length of stay in hospital of 12 days and a length of stay in the ICU of 5.8 days.

Results: We reviewed records of 9,799 patients admitted to the ICUs at our institution between 1 January 2001 and 30 June 2002. We selected a cohort in which clinicians caring for patients ordered a measurement of arterial lactate level. We excluded patients in which any necessary variable required to characterize an acid-base disorder was absent. A total of 851 patients (9% of ICU admissions) met our criteria. Of these, 548 patients (64%) had a metabolic acidosis (standard base excess < -2 mEq/l) and these patients had a 45% mortality, compared with 25% for those with no metabolic acidosis (p < 0.001). We then subclassified metabolic acidosis cases on the basis of the predominant anion present (lactate, chloride, or all other anions). The mortality rate was highest for lactic acidosis (56%); for strong ion gap (SIG) acidosis it was 39% and for hyperchloremic acidosis 29% (p < 0.001). A stepwise logistic regression model identified serum lactate, SIG, phosphate, and age as independent predictors of mortality.

Conclusion: In critically ill patients in which a measurement of lactate level was ordered, lactate and SIG were strong independent predictors of mortality when they were the major source of metabolic acidosis. Overall, patients with metabolic acidosis were nearly twice as likely to die as patients without metabolic acidosis.

Figures

Figure 1
Figure 1
Mortality associated with the major ion contributing to the metabolic acidosis. Hospital mortality associated with the various etiologies of metabolic acidosis (standard base excess (SBE) p < 0.001 for the four-group comparison.
Figure 2
Figure 2
Bland–Altman analysis of corrected anion gap (AGc) and strong ion gap (SIG). Solid line, mean differences; broken lines, ± 1.96 SD. Mean -1.36, SD 0.96, 95% confidence interval (CI) -1.42 to -1.29; lower limit of agreement = -3.24, 95% CI -3.36 to -3.14. Upper limit of agreement = 0.53, 95% CI 0.42 to 0.64. This shows good agreement between AGc and SIG, with only 27 of 851 data points outside 2 SD from the mean.
Figure 3
Figure 3
Bland–Altman analysis of simplified corrected anion gap (AGc (simple)) and strong ion gap (SIG). AGc (simple) was calculated in the same was as AGc, but without phosphate. Solid line, mean differences; broken lines, ± 1.96 SD. Mean -0.42, SD 1.28, 95% confidence interval (CI) -0.51 to -0.34. Lower limit of agreement = -2.93, 95% CI -3.08 to -2.79. Upper limit of agreement = 2.08, 95% CI 1.94 to 2.24. This shows good agreement between AGc (simple) and SIG, with only 30 of 851 data points outside 2 SD from the mean.

References

    1. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27:1577–1581. doi: 10.1097/00003246-199908000-00030.
    1. Cusack RJ, Rhodes A, Lochhead P, Jordan B, Perry S, Ball JA, Grounds RM, Bennett ED. The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med. 2002;28:864–869. doi: 10.1007/s00134-002-1318-2.
    1. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117:260–267. doi: 10.1378/chest.117.1.260.
    1. Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32:1120–1124. doi: 10.1097/01.CCM.0000125517.28517.74.
    1. Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R. Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med. 2003;31:2131–2136. doi: 10.1097/01.CCM.0000079819.27515.8E.
    1. Hucker TR, Mitchell GP, Blake LD, Cheek E, Bewick V, Grocutt M, Forni LG, Venn RM. Identifying the sick: can biochemical measurements be used to aid decision making on presentation to the accident and emergency department. Br J Anaesth. 2005;94:735–741. doi: 10.1093/bja/aei122.
    1. Davis JW, Parks SN, Kaups KL, Gladen HE, O'Donnell-Nicol S. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma. 1996;41:769–774.
    1. Dunham CM, Siegel JH, Weireter L, Fabian M, Goodarzi S, Guadalupi P, Gettings L, Linberg SE, Vary TC. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med. 1991;19:231–243.
    1. Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001;27:74–83. doi: 10.1007/s001340051352.
    1. Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med. 1994;22:1568–1578.
    1. Kellum JA, Song M, Venkataraman R. Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest. 2004;125:243–248. doi: 10.1378/chest.125.1.243.
    1. Kellum JA. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid–base balance with Hextend compared with saline. Crit Care Med. 2002;30:300–305. doi: 10.1097/00003246-200202000-00006.
    1. Kellum JA, Song M, Li J. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol Regul Integr Comp Physiol. 2004;286:R686–R692.
    1. Kellum JA. Determinants of blood pH in health and disease. Crit Care. 2000;4:6–14. doi: 10.1186/cc644.
    1. Salem MM, Mujais SK. Gaps in the anion gap. Arch Intern Med. 1992;152:1625–1629. doi: 10.1001/archinte.152.8.1625.
    1. Figge J, Mydosh T, Fencl V. Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med. 1992;120:713–719.
    1. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care. 1995;10:51–55. doi: 10.1016/0883-9441(95)90016-0.
    1. Stewart PA. Modern quantitative acid–base chemistry. Can J Physiol Pharmacol. 1983;61:1444–1461.
    1. Gunnerson KJ, Roberts G, Kellum JA. What is a normal Strong Ion Gap (SIG) in healthy subjects and critically ill patients without acid–base abnormalities? [abstract] Crit Care Med. 2003;31:A111.
    1. Durward A, Skellett S, Mayer A, Taylor D, Tibby SM, Murdoch IA. The value of the chloride: sodium ratio in differentiating the aetiology of metabolic acidosis. Intensive Care Med. 2001;27:828–835. doi: 10.1007/s001340100915.
    1. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26:1807–1810.
    1. Moviat M, van Haren F, van der HH. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care. 2003;7:R41–R45. doi: 10.1186/cc2184.
    1. Story DA, Poustie S, Bellomo R. Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap. Anaesthesia. 2002;57:1109–1114. doi: 10.1046/j.1365-2044.2002.02782_2.x.
    1. Broder G, Weil MH. Excess lactate: an index of reversibility of shock in human patients. Science. 1964;143:1457–1459.
    1. Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med. 1983;11:449–451.
    1. Rutherford EJ, Morris JA, Jr, Reed GW, Hall KS. Base deficit stratifies mortality and determines therapy. J Trauma. 1992;33:417–423.
    1. Siegel JH, Rivkind AI, Dalal S, Goodarzi S. Early physiologic predictors of injury severity and death in blunt multiple trauma. Arch Surg. 1990;125:498–508.
    1. Dondorp AM, Chau TT, Phu NH, Mai NT, Loc PP, Chuong LV, Sinh DX, Taylor A, Hien TT, White NJ, Day NP. Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med. 2004;32:1683–1688. doi: 10.1097/.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Fink MP. Does tissue acidosis in sepsis indicate tissue hypoperfusion? Intensive Care Med. 1996;22:1144–1146.
    1. Kellum JA, Kramer DJ, Lee K, Mankad S, Bellomo R, Pinsky MR. Release of lactate by the lung in acute lung injury. Chest. 1997;111:1301–1305.
    1. L'Her E, Sebert P. A global approach to energy metabolism in an experimental model of sepsis. Am J Resp Crit Care Med. 2001;164:1444–1447.
    1. Constable PD. Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg. 2003;96:919–922. doi: 10.1213/01.ANE.0000053256.77500.9D.
    1. Hayhoe M, Bellomo R, Liu G, McNicol L, Buxton B. The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med. 1999;25:680–685. doi: 10.1007/s001340050930.
    1. May LD, Berenson MM. Value of serum inorganic phosphate in the diagnosis of ischemic bowel disease. Am J Surg. 1983;146:266–268. doi: 10.1016/0002-9610(83)90388-4.
    1. Rocktaeschel J, Morimatsu H, Uchino S, Goldsmith D, Poustie S, Story D, Gutteridge G, Bellomo R. Acid–base status of critically ill patients with acute renal failure: analysis based on Stewart–Figge methodology. Crit Care. 2003;7:R60. doi: 10.1186/cc2333.

Source: PubMed

3
订阅