Clinical review: reunification of acid-base physiology

John A Kellum, John A Kellum

Abstract

Recent advances in acid-base physiology and in the epidemiology of acid-base disorders have refined our understanding of the basic control mechanisms that determine blood pH in health and disease. These refinements have also brought parity between the newer, quantitative and older, descriptive approaches to acid-base physiology. This review explores how the new and older approaches to acid-base physiology can be reconciled and combined to result in a powerful bedside tool. A case based tutorial is also provided.

Figures

Figure 1
Figure 1
The continuum of approaches to understanding acid–base physiology. All three approaches share certain affecter elements and all use markers and derived variables to describe acid–base imbalance. ATOT, total weak acids; PCO2, partial carbon dioxide tension; SBE, standard base excess; SID, strong ion difference; SIG, strong ion gap.
Figure 2
Figure 2
Carbon dioxide titration curves. Computer simulation of in vivo CO2 titration curves for human plasma using the traditional Van Slyke equation and various levels of ATOT (total weak acids) from normal (17.2) to 25% of normal. Also shown is the titration curve using the ATOT corrected standard base excess (SBEc)

References

    1. Corey HE. Stewart and beyond: New models of acid-base balance. Kidney Int. 2003;64:777–787. doi: 10.1046/j.1523-1755.2003.00177.x.
    1. Corey HE. Fundamental principles of acid–base physiology. Crit Care. 2005;9:184–192. doi: 10.1186/cc2985.
    1. Wooten EW. Analytic claculation of physiological acid-base parameters in plasma. J Appl Physiol. 1999;86:326–334.
    1. Wooten EW. Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol. 2003;95:2333–2344.
    1. Wooten EW. Quantitative acid-base physiology using the Stewart model. Crit Care. 2004;8:448–452. doi: 10.1186/cc2910.
    1. Shayakul C, Alper SL. Defects in processing and trafficking of the AE1 Cl-/HCO3- exchanger associated with inherited distal renal tubular acidosis. Clin Exp Nephrol. 2004;8:1–11. doi: 10.1007/s10157-003-0271-x.
    1. Kellum JA. Determinants of blood pH in health and disease. Crit Care. 2000;4:6–14. doi: 10.1186/cc644.
    1. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Splanchnic buffering of metabolic acid during early endotoxemia. J Crit Care. 1997;12:7–12. doi: 10.1016/S0883-9441(97)90020-4.
    1. Schlichtig R, Grogono AW, Severinghaus JW. Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med. 1998;26:1173–1179. doi: 10.1097/00003246-199807000-00015.
    1. Kellum JA. Making strong ion difference the "Euro" for bedside acid-base analysis. In: Vincent JL, editor. Yearbook of Intensive Care and Emergency Medicine. Berlin: Springer-Verlag; 2005. pp. 675–685.
    1. Kellum JA. Determinants of plasma acid-base balance. Crit Care Clin. 2005;21:329–346. doi: 10.1016/j.ccc.2005.01.010.
    1. Stewart P. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–1461.
    1. Stewart PA. How to Understand Acid-base: A Quantitative Acid-base Primer for Biology and Medicine. 1. New York: Elsevier; 1981.
    1. Kellum JA. Acid base pHorum
    1. Lloyd P. Strong ion calculator
    1. Kellum JA. Acid-base physiology in the post-Copernican era. Curr Opin Crit Care. 1999;5:429–435. doi: 10.1097/00075198-199912000-00003.
    1. Magder S. Pathophysiology of metabolic acid-base disturbances in patients with critical illness. In: Ronco C, Bellomo R, editor. Critical Care Nephrology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1997. pp. 279–296.
    1. Constable PD. A simplified strong ion model for acid-base equilibria: Application to horse plasma. J Appl Physiol. 1997;83:297–311.
    1. Fernandez PC, Cohen RM, Feldman GM. The concept of bicarbonate distribution space: the crucial role of body buffers. Kidney Int. 1989;36:747–752.
    1. Garella S, Dana CL, Chazan JA. Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med. 1973;289:121–126.
    1. Androgue HJ, Brensilver J, Cohen JJ, Madias NE. Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest. 1983;71:867–883.
    1. Singer RB, Hastings AB. An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine (Baltimore) 1948;27:223–242.
    1. Astrup P, Jorgensen K, Siggaard-Andersen O. Acid-base metabolism: New approach. Lancet. 1960;1:1035–1039. doi: 10.1016/S0140-6736(60)90930-2.
    1. Siggaard-Andersen O. The pH-log PCO2 blood acid-base nomogram revised. Scand J Clin Lab Invest. 1962;14:598–604.
    1. Grogono AW, Byles PH, Hawke W. An in vivo representation of acid-base balance. Lancet. 1976;1:499–500. doi: 10.1016/S0140-6736(76)90792-3.
    1. Severinghaus JW. Acid-base balance nomogram – a Boston-Copenhagen détente. Anesthesiology. 1976;45:539–541.
    1. Siggaard-Andersen O. The Acid-base Status of the Blood. 4. Baltimore, MD: William and Wilkins; 1974.
    1. Siggaard-Andersen O. The Van Slyke equation. Scand J Clin Lab Invest. 1977;146:15–20.
    1. Brackett NC, Cohen JJ, Schwartz WB. Carbon dioxide titration curve of normal man. N Engl J Med. 1965;272:6–12.
    1. Prys-Roberts C, Kelman GR, Nunn JF. Determinants of the in vivo carbon dioxide titration curve in anesthetized man. Br J Anesth. 1966;38:500–550.
    1. Figge J, Mydosh T, Fencl V. Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med. 1992;120:713–719.
    1. Narins RG, Emmett M. Simple and mixed acid-base disorders: A practical approach. Medicine (Baltimore) 1980;59:161–187.
    1. Sadjadi SA. A new range for the anion gap. Ann Intern Med. 1995;123:807–808.
    1. Winter SD, Pearson R, Gabow PG, Schultz A, Lepoff RB. The fall of the serum anion gap. Arch Intern Med. 1990;150:3113–3115. doi: 10.1001/archinte.150.2.311.
    1. Salem MM, Mujais SK. Gaps in the anion gap. Arch Intern Med. 1992;152:1625–1629. doi: 10.1001/archinte.152.8.1625.
    1. Gilfix BM, Bique M, Magder S. A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care. 1993;8:187–197. doi: 10.1016/0883-9441(93)90001-2.
    1. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care. 1995;10:51–55. doi: 10.1016/0883-9441(95)90016-0.
    1. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Hepatic anion flux during acute endotoxemia. J Appl Physiol. 1995;78:2212–2217.
    1. Moviat M, van Haren F, van der Hoeven H. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care. 2003;7:R41–R45. doi: 10.1186/cc2184.
    1. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27:1577–1581. doi: 10.1097/00003246-199908000-00030.
    1. Cusack RJ, Rhodes A, Lochhead P, Jordan B, Perry S, Ball JAS, Grounds RM, Bennett ED. The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/ surgical adult ICU. Intensive Care Med. 2002;28:864–869. doi: 10.1007/s00134-002-1318-2.
    1. Rocktaschel J, Morimatsu H, Uchino S, Bellomo R. Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med. 2003;31:2131–2136. doi: 10.1097/01.CCM.0000079819.27515.8E.
    1. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock. 1998;9:364–368.
    1. Kaplan L, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32:1120–1124. doi: 10.1097/01.CCM.0000125517.28517.74.
    1. Dondorp AM, Chau TT, Phu NH, Mai NT, Loc PP, Chuong LV, Sinh DX, Taylor A, Hien TT, White NJ, Day NP. Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med. 2004;32:1683–1688. doi: 10.1097/.
    1. Kellum JA. Closing the gap on unmeasured anions. Crit Care. 2003;7:219–220. doi: 10.1186/cc2189.
    1. Hayhoe M, Bellomo R, Liu G, McNicol L, Buxton B. The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med. 1999;25:680–685. doi: 10.1007/s001340050930.
    1. Durward A, Tibby SM, Skellett S, Austin C, Anderson D, Murdoch IA. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery. Pediatr Crit Care Med. 2005;6:281–285. doi: 10.1097/01.PCC.0000163979.33774.89.
    1. Rocktaschel J, Morimatsu H, Uchino S, Goldsmith D, Poustie S, Story D, Gutteridge G, Bellomo R. Acid-base status of critically ill patients with acute renal failure: analysis based on Stewart-Figge methodology. Crit Care. 2003;7:R60–R66. doi: 10.1186/cc2333.
    1. Kellum JA, Kramer DJ, Lee K, Mankad S, Bellomo R, Pinsky MR. Release of lactate by the lung in acute lung injury. Chest. 1997;111:1301–1305.
    1. Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med. 2002;30:157–160. doi: 10.1097/00003246-200201000-00022.

Source: PubMed

3
订阅