Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research - Recommendations for Experiment Planning, Data Analysis, and Data Reporting

Sylvain Laborde, Emma Mosley, Julian F Thayer, Sylvain Laborde, Emma Mosley, Julian F Thayer

Abstract

Psychophysiological research integrating heart rate variability (HRV) has increased during the last two decades, particularly given the fact that HRV is able to index cardiac vagal tone. Cardiac vagal tone, which represents the contribution of the parasympathetic nervous system to cardiac regulation, is acknowledged to be linked with many phenomena relevant for psychophysiological research, including self-regulation at the cognitive, emotional, social, and health levels. The ease of HRV collection and measurement coupled with the fact it is relatively affordable, non-invasive and pain free makes it widely accessible to many researchers. This ease of access should not obscure the difficulty of interpretation of HRV findings that can be easily misconstrued, however, this can be controlled to some extent through correct methodological processes. Standards of measurement were developed two decades ago by a Task Force within HRV research, and recent reviews updated several aspects of the Task Force paper. However, many methodological aspects related to HRV in psychophysiological research have to be considered if one aims to be able to draw sound conclusions, which makes it difficult to interpret findings and to compare results across laboratories. Those methodological issues have mainly been discussed in separate outlets, making difficult to get a grasp on them, and thus this paper aims to address this issue. It will help to provide psychophysiological researchers with recommendations and practical advice concerning experimental designs, data analysis, and data reporting. This will ensure that researchers starting a project with HRV and cardiac vagal tone are well informed regarding methodological considerations in order for their findings to contribute to knowledge advancement in their field.

Keywords: cardiac vagal control; heart rate variability; parasympathetic activity; parasympathetic nervous system; vagal activity; vagal tone.

Figures

FIGURE 1
FIGURE 1
Heart rate variability (HRV). This figure displays the way HRV is calculated based on the R–R intervals of the QRS complex extracted from the electrocardiogram (ECG) signal.
FIGURE 2
FIGURE 2
Typical experiment structure for HRV experiments, depicting the three Rs: resting, reactivity, and recovery. HRV, Heart rate variability.

References

    1. Alvares G. A., Quintana D. S., Hickie I. B., Guastella A. J. (2016). Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J. Psychiatry Neurosci. 41 89–104. 10.1503/jpn.140217
    1. Badilini F., Maison-Blanche P., Coumel P. (1988). Heart rate variability in passive tilt test: comparative evaluation of autoregressive and FFT spectral analyses. Pacing Clin. Electrophysiol. 21 1122–1132.
    1. Berna G., Ott L., Nandrino J. L. (2014). Effects of emotion regulation difficulties on the tonic and phasic cardiac autonomic response. PLoS ONE 9:e102971 10.1371/journal.pone.0102971
    1. Berntson G. G., Bigger J. T., Eckberg D. L., Grossman P., Kaufmann P. G., Malik M., et al. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34 623–648.
    1. Berntson G. G., Quigley K. S., Lozano D. (2007). “Cardiovascular psychophysiology,” in Handbook of Psychophysiology, eds Cacioppo J. T., Tassinary L. G., Berntson G. G. (New York, NY: Cambridge University Press; ).
    1. Berntson G. G., Stowell J. R. (1998). ECG artifacts and heart period variability: dont miss a beat! Psychophysiology 35 127–132. 10.1111/1469-8986.3510127
    1. Bertsch K., Hagemann D., Naumann E., Schachinger H., Schulz A. (2012). Stability of heart rate variability indices reflecting parasympathetic activity. Psychophysiology 49 672–682. 10.1111/j.1469-8986.2011.01341.x
    1. Billman G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 4:26 10.3389/fphys.2013.00026
    1. Billman G. E., Huikuri H. V., Sacha J., Trimmel K. (2015). An introduction to heart rate variability: methodological considerations and clinical applications. Front. Physiol. 6:55 10.3389/fphys.2015.00055
    1. Boardman A., Schlindwein F. S., Rocha A. P., Leite A. (2002). A study on the optimum order of autoregressive models for heart rate variability. Physiol. Meas. 23 325–336.
    1. Bravi A., Longtin A., Seely A. J. (2011). Review and classification of variability analysis techniques with clinical applications. Biomed. Eng. Online 10:90 10.1186/1475-925x-10-90
    1. Brodal P. (2010). The Central Nervous System – Structure and Function. New York, NY: Oxford University Press.
    1. Brown T. E., Beightol L. A., Koh J., Eckberg D. L. (1993). Important influence of respiration on human R-R interval power spectra is largely ignored. J. Appl. Physiol. (1985) 75 2310–2317.
    1. Buchheit M., Simon C., Charloux A., Doutreleau S., Piquard F., Brandenberger G. (2005). Heart rate variability and intensity of habitual physical activity in middle-aged persons. Med. Sci. Sports Exerc. 37 1530–1534. 10.1249/01.mss.0000177556.05081.77
    1. Burr R. L., Cowan M. J. (1992). Autoregressive spectral models of heart rate variability. Practical issues. J. Electrocardiol. 25(Suppl.), 224–233.
    1. Cervantes Blásquez J. C., Rodas Font G., Capdevila Ortís L. (2009). Heart-rate variability and precompetitive anxiety in swimmers. Psicothema 21 531–536.
    1. Chambers A. S., Allen J. J. B. (2007). Cardiac vagal control, emotion, psychopathology, and health. Biol. Psychol. 74 113–115. 10.1016/j.biopsycho.2006.09.004
    1. Champely S. (2016). pwr: Basic Functions for Power Analysis. Available at:
    1. Chapleau M. W., Sabharwal R. (2011). Methods of assessing vagus nerve activity and reflexes. Heart Fail. Rev. 16 109–127. 10.1007/s10741-010-9174-6
    1. Cohen D. (1988). Statistical Power Analysis for Behavioral Sciences. Hillsdale, MI: Erlbaum.
    1. Cohen H., Loewenthal U., Matar M., Kotler M. (2001). Association of autonomic dysfunction and clozapine. Heart rate variability and risk for sudden death in patients with schizophrenia on long-term psychotropic medication. Br. J. Psychiatry 179 167–171.
    1. Collins S., Karasek R. (2010). Reduced vagal cardiac control variance in exhausted and high strain job subjects. Int. J. Occup. Med. Environ. Health 23 267–278. 10.2478/v10001-010-0023-6
    1. Cowan M. J., Burr R. L., Narayanan S. B., Buzaitis A., Strasser M., Busch S. (1992). Comparison of autoregression and fast Fourier transform techniques for power spectral analysis of heart period variability of persons with sudden cardiac arrest before and after therapy to increase heart period variability. J. Electrocardiol. 25(Suppl.), 234–239.
    1. Denver J. W., Reed S. F., Porges S. W. (2007). Methodological issues in the quantification of respiratory sinus arrhythmia. Biol. Psychol. 74 286–294. 10.1016/j.biopsycho.2005.09.005
    1. Dick T. E., Hsieh Y. H., Dhingra R. R., Baekey D. M., Galan R. F., Wehrwein E., et al. (2014). Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. Prog. Brain Res. 209 191–205. 10.1016/B978-0-444-63274-6.00010-2
    1. Duschek S., Muckenthaler M., Werner N., Reyes del Paso G. A. (2009). Relationships between features of autonomic cardiovascular control and cognitive performance. Biol. Psychol. 81 110–117. 10.1016/j.biopsycho.2009.03.003
    1. Eckberg D. L. (1983). Human sinus arrhythmia as an index of vagal cardiac outflow. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 54 961–966.
    1. Eckberg D. L. (1997). Sympathovagal balance: a critical appraisal. Circulation 96 3224–3232.
    1. Eckberg D. L., Eckberg M. J. (1982). Human sinus node responses to repetitive, ramped carotid baroreceptor stimuli. Am. J. Physiol. 242 H638–H644.
    1. Egizio V. B., Jennings J. R., Christie I. C., Sheu L. K., Matthews K. A., Gianaros P. J. (2008). Cardiac vagal activity during psychological stress varies with social functioning in older women. Psychophysiology 45 1046–1054. 10.1111/j.1469-8986.2008.00698.x
    1. Ellis R. J., Zhu B., Koenig J., Thayer J. F., Wang Y. (2015). A careful look at ECG sampling frequency and R-peak interpolation on short-term measures of heart rate variability. Physiol. Meas. 36 1827–1852. 10.1088/0967-3334/36/9/1827
    1. Elstad M. (2012). Respiratory variations in pulmonary and systemic blood flow in healthy humans. Acta Physiol. 205 341–348. 10.1111/j.1748-1716.2012.02419.x
    1. Esco M. R., Flatt A. A. (2014). Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. J. Sports Sci. Med. 13 535–541.
    1. Fagard R. H., Pardaens K., Staessen J. A., Thijs L. (1998). Power spectral analysis of heart rate variability by autoregressive modelling and fast Fourier transform: a comparative study. Acta Cardiol. 53 211–218.
    1. Faul F., Erdfelder E., Buchner A., Lang A. G. (2009). Statistical power analyses using G∗Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41 1149–1160. 10.3758/BRM.41.4.1149
    1. Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G∗Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39 175–191.
    1. Fenton-O’Creevy M., Lins J. (2012). Emotion regulation and trader expertise: heart rate variability on the trading floor. J. Neurosci. Psychol. Econ. 5 227–237. 10.1037/a0030364
    1. Flatt A. A., Esco M. R. (2013). Validity of the ithleteTM smart phone application for determining ultra-short-term heart rate variability. J. Hum. Kinet. 39 85–92. 10.2478/hukin-2013-0071
    1. Ghuman N., Campbell P., White W. B. (2009). Role of ambulatory and home blood pressure recording in clinical practice. Curr. Cardiol. Rep. 11 414–421.
    1. Gil E., Orini M., Bailon R., Vergara J. M., Mainardi L., Laguna P. (2010). Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 31 1271–1290. 10.1088/0967-3334/31/9/015
    1. Grossman P. (1992). Respiratory and cardiac rhythms as windows to central and autonomic biobehavioral regulation: selection of window frames, keeping the panes clean and viewing the neural topography. Biol. Psychol. 34 131–161.
    1. Grossman P., Taylor E. W. (2007). Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74 263–285. 10.1016/j.biopsycho.2005.11.014
    1. Grossman P., van Beek J., Wientjes C. (1990). A comparison of three quantification methods for estimation of respiratory sinus arrhythmia. Psychophysiology 27 702–714.
    1. Grossman P., Wilhelm F. H., Spoerle M. (2004). Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. Am. J. Physiol. Heart Circ. Physiol. 287 H728–H734. 10.1152/ajpheart.00825.2003
    1. Hansen A. L., Johnsen B. H., Thayer J. F. (2003). Vagal influence on working memory and attention. Int. J. Psychophysiol. 48 263–274. 10.1016/S0167-8760(03)00073-4
    1. Hayano J., Sakakibara Y., Yamada A., Yamada M., Mukai S., Fujinami T., et al. (1991). Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am. J. Cardiol. 67 199–204.
    1. Hayano J., Yamada M., Sakakibara Y., Fujinami T., Yokoyama K., Watanabe Y., et al. (1990). Short- and long-term effects of cigarette smoking on heart rate variability. Am. J. Cardiol. 65 84–88.
    1. Heathers J. A. (2014). Everything Hertz: methodological issues in short-term frequency-domain HRV. Front. Physiol. 5:177 10.3389/fphys.2014.00177
    1. Hill L. K., Siebenbrock A. (2009). Are all measures created equal? Heart rate variability and respiration. Biomed. Sci. Instrum. 45 71–76.
    1. Hill L. K., Siebenbrock A., Sollers J. J., Thayer J. F. (2009). Are all measures created equal? Heart rate variability and respiration – biomed 2009. Biomed. Sci. Instrum. 45 71–76.
    1. Hirsch J. A., Bishop B. (1981). Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241 H620–H629.
    1. Houtveen J. H., Rietveld S., de Geus E. J. (2002). Contribution of tonic vagal modulation of heart rate, central respiratory drive, respiratory depth, and respiratory frequency to respiratory sinus arrhythmia during mental stress and physical exercise. Psychophysiology 39 427–436.
    1. Inoue N., Kuroda K., Sugimoto A., Kakuda T., Fushiki T. (2003). Autonomic nervous responses according to preference for the odor of jasmine tea. Biosci. Biotechnol. Biochem. 67 1206–1214. 10.1271/bbb.67.1206
    1. Jarczok M. N., Li J., Mauss D., Fischer J. E., Thayer J. F. (2012). Heart rate variability is associated with glycemic status after controlling for components of the metabolic syndrome. Int. J. Cardiol. 167 855–861. 10.1016/j.ijcard.2012.02.002
    1. Jennings J. R., Allen B., Gianaros P. J., Thayer J. F., Manuck S. B. (2015). Focusing neurovisceral integration: cognition, heart rate variability, and cerebral blood flow. Psychophysiology 52 214–224. 10.1111/psyp.12319
    1. Jennings J. R., Kamarck T., Stewart C., Eddy M., Johnson P. (1992). Alternate cardiovascular baseline assessment techniques: vanilla or resting baseline. Psychophysiology 29 742–750.
    1. Johnsen B. H., Thayer J. F., Laberg J. C., Wormnes B., Raadal M., Skaret E., et al. (2003). Attentional and physiological characteristics of patients with dental anxiety. J. Anxiety Disord. 17 75–87.
    1. Kaufmann T., Sütterlin S., Schulz S. M., Vögele C. (2011). ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis. Behav. Res. Methods 43 1161–1170. 10.3758/s13428-011-0107-7
    1. Kemp A. H., Quintana D. S., Gray M. A., Felmingham K. L., Brown K., Gatt J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol. Psychiatry 67 1067–1074. 10.1016/j.biopsych.2009.12.012
    1. Kirschbaum C., Kudielka B. M., Gaab J., Schommer N. C., Hellhammer D. H. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosom. Med. 61 154–162.
    1. Kleiger R. E., Stein D. S., Bigger M. D. (2005). Heart rate variability: measurement and clinical utility. Ann. Noninvasive Electrocardiol. 10 88–101. 10.1111/j.1542-474X.2005.10101.x
    1. Kligfield P., Gettes L. S., Bailey J. J., Childers R., Deal B. J., Hancock E., et al. (2007). Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 49 1109–1127. 10.1016/j.jacc.2007.01.024
    1. Kuehl L. K., Deuter C. E., Richter S., Schulz A., Ruddel H., Schachinger H. (2015). Two separable mechanisms are responsible for mental stress effects on high frequency heart rate variability: an intra-individual approach in a healthy and a diabetic sample. Int. J. Psychophysiol. 95 299–303. 10.1016/j.ijpsycho.2014.12.003
    1. Laborde S., Brüll A., Weber J., Anders L. S. (2011). Trait emotional intelligence in sports: a protective role against stress through heart rate variability? Pers. Individ. Dif. 51 23–27. 10.1016/j.paid.2011.03.003
    1. Laborde S., Furley P., Schempp C. (2015a). The relationship between working memory, reinvestment, and heart rate variability. Physiol. Behav. 139 430–436. 10.1016/j.physbeh.2014.11.036
    1. Laborde S., Lautenbach F., Allen M. S. (2015b). The contribution of coping-related variables and heart rate variability to visual search performance under pressure. Physiol. Behav. 139 532–540. 10.1016/j.physbeh.2014.12.003
    1. Laborde S., Raab M. (2013). The tale of hearts and reason: the influence of mood on decision making. J. Sport Exerc. Psychol. 35 339–357.
    1. Laborde S., Raab M., Kinrade N. P. (2014). Is the ability to keep your mind sharp under pressure reflected in your heart? Evidence for the neurophysiological bases of decision reinvestment. Biol. Psychol. 100 34–42. 10.1016/j.biopsycho.2014.05.003
    1. Larsen P. D., Tzeng Y. C., Sin P. Y., Galletly D. C. (2010). Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir. Physiol. Neurobiol. 174 111–118. 10.1016/j.resp.2010.04.021
    1. Lehrer P. M. (2013). How does heart rate variability biofeedback work? resonance, the baroreflex, and other mechanisms. Biofeedback 41 26–31. 10.5298/1081-5937-41.1.02
    1. Lewis G. F., Furman S. A., McCool M. F., Porges S. W. (2012). Statistical strategies to quantify respiratory sinus arrhythmia: Are commonly used metrics equivalent? Biol. Psychol. 89 349–364. 10.1016/j.biopsycho.2011.11.009
    1. Lewis M. J., Kingsley M., Short A. L., Simpson K. (2007). Rate of reduction of heart rate variability during exercise as an index of physical work capacity. Scand. J. Med. Sci. Sports 17 696–702. 10.1111/j.1600-0838.2006.00616.x
    1. Lu C. L., Zou X., Orr W. C., Chen J. D. (1999). Postprandial changes of sympathovagal balance measured by heart rate variability. Dig. Dis. Sci. 44 857–861.
    1. Malik M. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17 354–381.
    1. Marcovitch S., Leigh J., Calkins S. D., Leerks E. M., O’Brien M., Blankson A. N. (2010). Moderate vagal withdrawal in 3.5-year-old children is associated with optimal performance on executive function tasks. Dev. Psychobiol. 52 603–608. 10.1002/dev.20462
    1. Martin C. K., Heilbronn L. K., de Jonge L., DeLany J. P., Volaufova J., Anton S., et al. (2007). Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity (Silver Spring) 15 2964–2973. 10.1038/oby.2007.354
    1. Massin M. M., Maeyns K., Withofs N., Ravet F., Gerard P. (2000). Circadian rhythm of heart rate and heart rate variability. Arch. Dis. Child. 83 179–182.
    1. Mateo M., Blasco-Lafarga C., Martínez-Navarro I., Guzmán J. F., Zabala M. (2012). Heart rate variability and pre-competitive anxiety in BMX discipline. Eur. J. Appl. Physiol. 112 113–123. 10.1007/s00421-011-1962-8
    1. McCraty R., Childre D. (2010). Coherence: bridging personal, social, and global health. Altern. Ther. Health Med. 16 10–24.
    1. McCraty R., Shaffer F. (2015). Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 4 46–61. 10.7453/gahmj.2014.073
    1. Melillo P., Bracale M., Pecchia L. (2011). Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examination. Biomed. Eng. Online 10:96 10.1186/1475-925X-10-96
    1. Messerotti Benvenuti S., Mennella R., Buodo G., Palomba D. (2015). Dysphoria is associated with reduced cardiac vagal withdrawal during the imagery of pleasant scripts: evidence for the positive attenuation hypothesis. Biol. Psychol. 106 28–38. 10.1016/j.biopsycho.2014.11.017
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognit. Psychol. 41 49–100. 10.1006/cogp.1999.0734
    1. Moody G. B., Mark R. G., Zoccola A., Mantero S. (1985). Derivation of respiratory signals from multi-lead ECGs. Comput. Cardiol. 12 113–116.
    1. Munoz M. L., van Roon A., Riese H., Thio C., Oostenbroek E., Westrik I., et al. (2015). Validity of (ultra-)short recordings for heart rate variability measurements. PLoS ONE 10:e0138921 10.1371/journal.pone.0138921
    1. Neijts M., Van Lien R., Kupper N., Boomsma D., Willemsen G., de Geus E. J. (2014). Heritability of cardiac vagal control in 24-h heart rate variability recordings: influence of ceiling effects at low heart rates. Psychophysiology 51 1023–1036. 10.1111/psyp.12246
    1. Neumann S. A., Sollers J. J., Thayer J. F., Waldstein S. R. (2004). Alexithymia predicts attenuated autonomic reactivity, but prolonged recovery to anger recall in young women. Int. J. Psychophysiol. 53 183–195.
    1. Nisenbaum M. G., de Melo N. R., Giribela C. R., de Morais T. L., Guerra G. M., de Angelis K., et al. (2014). Effects of a contraceptive containing drospirenone and ethinyl estradiol on blood pressure and autonomic tone: a prospective controlled clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 175 62–66. 10.1016/j.ejogrb.2014.01.006
    1. Otzenberger H., Gronfier C., Simon C., Charloux A., Ehrhart J., Piquard F., et al. (1998). Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am. J. Physiol. 275(3 Pt 2), H946–H950.
    1. Park G., Vasey M. W., Van Bavel J. J., Thayer J. F. (2014). When tonic cardiac vagal tone predicts changes in phasic vagal tone: the role of fear and perceptual load. Psychophysiology 51 419–426. 10.1111/psyp.12186
    1. Penttila J., Helminen A., Jartti T., Kuusela T., Huikuri H. V., Tulppo M., et al. (2001). Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin. Physiol. 21 365–376.
    1. Peschel S. K., Feeling N. R., Vogele C., Kaess M., Thayer J. F., Koenig J. (2016). A meta-analysis on resting state high-frequency heart rate variability in bulimia nervosa. Eur. Eat. Disord. Rev. 24 355–365. 10.1002/erv.2454
    1. Pichon A., Roulaud M., Antoine-Jonville S., De Bisschop C., Denjean A. (2006). Spectral analysis of heart rate variability: Interchangeability between autoregressive analysis and fast Fourier transform. J. Electrocardiol. 39 31–37.
    1. Pickering T. G., White W. B., Giles T. D., Black H. R., Izzo J. L., Materson B. J., et al. (2008). When and how to use self (home) and ambulatory blood pressure monitoring. J. Am. Soc. Hypertens 2 119–124. 10.1016/j.jash.2008.04.002
    1. Piferi R. L., Kline K. A., Younger J., Lawler K. A. (2000). An alternative approach for achieving cardiovascular baseline: viewing an aquatic video. Int. J. Psychophysiol. 37 207–217.
    1. Piskorski J., Guzik P. (2005). Filtering Poincaré plots. Comput. Methods Sci. Technol. 11 39–48.
    1. Porges S. W. (2007). The polyvagal perspective. Biol. Psychol. 74 116–143. 10.1016/j.biopsycho.2006.06.009
    1. Prinsloo G. E., Rauch H. G., Lambert M. I., Muench F., Noakes T. D., Derman W. E. (2011). The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Appl. Cogn. Psychol. 25 792–801. 10.1002/acp.1750
    1. Quintana D. S. (2016). Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology. 10.1111/psyp.12798 [Epub ahead of print].
    1. Quintana D. S., Alvares G. A., Heathers J. A. (2016). Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): recommendations to advance research communication. Transl. Psychiatry 6:e803 10.1038/tp.2016.73
    1. Quintana D. S., Guastella A. J., McGregor I. S., Hickie I. B., Kemp A. H. (2013a). Moderate alcohol intake is related to increased heart rate variability in young adults: implications for health and well-being. Psychophysiology 50 1202–1208. 10.1111/psyp.12134
    1. Quintana D. S., Heathers J. A. (2014). Considerations in the assessment of heart rate variability in biobehavioral research. Front. Psychol. 5:805 10.3389/fpsyg.2014.00805
    1. Quintana D. S., McGregor I. S., Guastella A. J., Malhi G. S., Kemp A. H. (2013b). A meta-analysis on the impact of alcohol dependence on short-term resting-state heart rate variability: implications for cardiovascular risk. Alcohol. Clin. Exp. Res. 37(Suppl. 1), E23–E29. 10.1111/j.1530-0277.2012.01913.x
    1. Raj S. R., Roach D. E., Koshman M. L., Sheldon R. S. (2004). Activity-responsive pacing produces long-term heart rate variability. J. Cardiovasc. Electrophysiol. 15 179–183. 10.1111/j.1540-8167.2004.03342.x
    1. Rebelo A. C., Tamburus N., Salviati M., Celante V., Takahashi A., de Sa M., et al. (2011). Influence of third-generation oral contraceptives on the complexity analysis and symbolic dynamics of heart rate variability. Eur. J. Contracept. Reprod. Health Care 16 289–297. 10.3109/13625187.2011.591217
    1. Riniolo T., Porges S. W. (1997). Inferential and descriptive influences on measures of respiratory sinus arrhythmia: sampling rate, R-wave trigger accuracy, and variance estimates. Psychophysiology 34 613–621.
    1. Roach D., Sheldon A., Wilson W., Sheldon R. (1998). Temporally localized contributions to measures of large-scale heart rate variability. Am. J. Physiol. 274(5 Pt 2), H1465–H1471.
    1. Roach D., Wilson W., Ritchie D., Sheldon R. (2004). Dissection of long-range heart rate variability: controlled induction of prognostic measures by activity in the laboratory. J. Am. Coll. Cardiol. 43 2271–2277. 10.1016/j.jacc.2004.01.050
    1. Rodriguez-Linares L., Lado M. J., Vila X. A., Mendez A. J., Cuesta P. (2014). gHRV: heart rate variability analysis made easy. Comput. Methods Programs Biomed. 116 26–38. 10.1016/j.cmpb.2014.04.007
    1. Rottenberg J., Salomon K., Gross J. J., Gotlib I. H. (2005). Vagal withdrawal to a sad film predicts subsequent recovery from depression. Psychophysiology 42 277–281. 10.1111/j.1469-8986.2005.00289.x
    1. Saboul D., Pialoux V., Hautier C. (2014). The breathing effect of the LF/HF ratio in the heart rate variability measurements of athletes. Eur. J. Sport Sci. 14(Suppl. 1), S282–S288. 10.1080/17461391.2012.691116
    1. Salahuddin L., Cho J., Jeong M. G., Kim D. (2007). Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007 4656–4659. 10.1109/iembs.2007.4353378
    1. Sassi R., Cerutti S., Lombardi F., Malik M., Huikuri H. V., Peng C., et al. (2015). Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17 1341–1353. 10.1093/europace/euv015
    1. Saus E. R., Johnsen B. H., Eid J., Riisem P. K., Andersen R., Thayer J. F. (2006). The effect of brief situational awareness training in a police shooting simulator: an experimental study. Mil. Psychol. 18 S3–S21.
    1. Saus E. R., Johnsen B. H., Eid J., Thayer J. F. (2012). Who benefits from simulator training: personality and heart rate variability in relation to situation awareness during navigation training. Comput. Hum. Behav. 28 1262–1268. 10.1016/j.chb.2012.02.009
    1. Schafer A., Vagedes J. (2013). How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int. J. Cardiol. 166 15–29. 10.1016/j.ijcard.2012.03.119
    1. Schroeder E. B., Liao D., Chambless L. E., Prineas R. J., Evans G. W., Heiss G. (2003). Hypertension, blood pressure, and heart rate variability: the atherosclerosis risk in communities (ARIC) study. Hypertension 42 1106–1111. 10.1161/01.HYP.0000100444.71069.73
    1. Schulz S. M., Ayala E., Dahme B., Ritz T. (2009). A MATLAB toolbox for correcting within-individual effects of respiration rate and tidal volume on respiratory sinus arrhythmia during variable breathing. Behav. Res. Methods 41 1121–1126. 10.3758/BRM.41.4.1121
    1. Schwerdtfeger A., Derakshan N. (2010). The time line of threat processing and vagal withdrawal in response to a self-threatening stressor in cognitive avoidant copers: evidence for vigilance-avoidance theory. Psychophysiology 47 786–795. 10.1111/j.1469-8986.2010.00965.x
    1. Shaffer F., Combatalade D. C. (2013). Don’t add or miss a beat: a guide to cleaner heart rate variability recordings. Biofeedback 41 121–130. 10.5298/1081-5937-41.3.04
    1. Shaffer F., McCraty R., Zerr C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 5:1040 10.3389/fpsyg.2014.01040
    1. Sjoberg N., Saint D. A. (2011). A single 4 mg dose of nicotine decreases heart rate variability in healthy nonsmokers: implications for smoking cessation programs. Nicotine Tob. Res. 13 369–372. 10.1093/ntr/ntr004
    1. Smith A. L., Owen H., Reynolds K. J. (2013a). Heart rate variability indices for very short-term (30 beat) analysis. Part 1: survey and toolbox. J. Clin. Monit. Comput. 27 569–576. 10.1007/s10877-013-9471-4
    1. Smith A. L., Owen H., Reynolds K. J. (2013b). Heart rate variability indices for very short-term (30 beat) analysis. Part 2: validation. J. Clin. Monit. Comput. 27 577–585. 10.1007/s10877-013-9473-2
    1. Soares-Miranda L., Sattelmair J., Chaves P., Duncan G. E., Siscovick D. S., Stein P. K., et al. (2014). Physical activity and heart rate variability in older adults: the cardiovascular health study. Circulation 129 2100–2110. 10.1161/CIRCULATIONAHA.113.005361
    1. Stanley J., Peake J. M., Buchheit M. (2013a). Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 43 1259–1277. 10.1007/s40279-013-0083-4
    1. Stanley J., Peake J. M., Buchheit M. (2013b). Consecutive days of cold water immersion: effects on cycling performance and heart rate variability. Eur. J. Appl. Physiol. 113 371–384. 10.1007/s00421-012-2445-2
    1. Stein P. K., Domitrovich P. P., Hui N., Rautaharju P., Gottdiener J. (2005). Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J. Cardiovasc. Electrophysiol. 16 954–959. 10.1111/j.1540-8167.2005.40788.x
    1. Stein P. K., Pu Y. (2012). Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 16 47–66. 10.1016/j.smrv.2011.02.005
    1. Swan M. (2013). The quantified self: fundamental disruption in big data science and biological discovery. Big Data 1 85–99. 10.1089/big.2012.0002
    1. Tak L. M., Riese H., de Bock G. H., Manoharan A., Kok I. C., Rosmalen J. G. M. (2009). As good as it gets? A meta-analysis and systematic review of methodological quality of heart rate variability studies in functional somatic disorders. Biol. Psychol. 82 101–110. 10.1016/j.biopsycho.2009.05.002
    1. Tarvainen M. P., Niskanen J. P. (2012). Kubios HRV Version 2.1 – User’s Guide. Kuopio: University of Eastern Finland.
    1. Tarvainen M. P., Niskanen J. P., Lipponen J. A., Ranta-Aho P. O., Karjalainen P. A. (2014). Kubios HRV–heart rate variability analysis software. Comput. Methods Programs 113 210–220. 10.1016/j.cmpb.2013.07.024
    1. Thayer J. F., Ahs F., Fredrikson M., Sollers J. J., Wager T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36 747–756. 10.1016/j.neubiorev.2011.11.009
    1. Thayer J. F., Hansen A. L., Saus-Rose E., Johnsen B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 37 141–153. 10.1007/s12160-009-9101-z
    1. Thayer J. F., Lane R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 61 201–216. 10.1016/S0165-0327(00)00338-4
    1. Thayer J. F., Loerbroks A., Sternberg E. M. (2011). Inflammation and cardiorespiratory control: the role of the vagus nerve. Respir. Physiol. Neurobiol. 178 387–394. 10.1016/j.resp.2011.05.016
    1. Thayer J. F., Sollers J. J., III, Ruiz-Padial E., Vila J. (2002). Estimating respiratory frequency from autoregressive spectral analysis of heart period. IEEE Eng. Med. Biol. Mag. 21 41–45.
    1. Thayer J. F., Wang X., Snieder H. (2006). Ethnic differences in heart rate variability: Does ultralow-frequency heart rate variability really measure autonomic tone? Am. Heart J. 152:e27 10.1016/j.ahj.2006.05.027
    1. Umetani K., Singer D. H., McCraty R., Atkinson M. (1998). Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J. Am. Coll. Cardiol. 31 593–601.
    1. van Eekelen A. P., Houtveen J. H., Kerkhof G. A. (2004). Circadian variation in cardiac autonomic activity: reactivity measurements to different types of stressors. Chronobiol. Int. 21 107–129.
    1. Verkuil B., Brosschot J. F., Tollenaar M. S., Lane R. D., Thayer J. F. (2016). Prolonged non-metabolic heart rate variability reduction as a physiological marker of psychological stress in daily life. Ann. Behav. Med. 50 704–714. 10.1007/s12160-016-9795-7
    1. Villarejo M. V., Zapirain B. G., Zorrilla A. M. (2013). Algorithms based on CWT and classifiers to control cardiac alterations and stress using an ECG and a SCR. Sensors (Basel) 13 6141–6170. 10.3390/s130506141
    1. Weippert M., Kumar M., Kreuzfeld S., Arndt D., Rieger A., Stoll R. (2010). Comparison of three mobile devices for measuring R-R intervals and heart rate variability: polar S810i, Suunto t6 and an ambulatory ECG system. Eur. J. Appl. Physiol. 109 779–786. 10.1007/s00421-010-1415-9
    1. Wilhelm F. H., Grossman P., Coyle M. A. (2004). Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration. Biomed. Sci. Instrum. 40 317–324.
    1. Yi S. H., Lee K., Shin D. G., Kim J. S., Kim H. C. (2013). Differential association of adiposity measures with heart rate variability measures in Koreans. Yonsei Med. J. 54 55–61. 10.3349/ymj.2013.54.1.55
    1. Young F. L., Leicht A. S. (2011). Short-term stability of resting heart rate variability: influence of position and gender. Appl. Physiol. Nutr. Metab. 36 210–218. 10.1139/h10-103
    1. Zimmermann-Viehoff F., Thayer J. F., Koenig J., Herrmann C., Weber C. S., Deter H. C. (2015). Short-term effects of espresso coffee on heart rate variability and blood pressure in habitual and non-habitual coffee consumers - A randomized crossover study. Nutr. Neurosci. 19 169–175. 10.1179/1476830515Y.0000000018

Source: PubMed

3
订阅