The Influence of Breathing on the Central Nervous System

Bruno Bordoni, Shahin Purgol, Annalisa Bizzarri, Maddalena Modica, Bruno Morabito, Bruno Bordoni, Shahin Purgol, Annalisa Bizzarri, Maddalena Modica, Bruno Morabito

Abstract

The functions of the diaphragm do not stop locally in its anatomy but affect the whole body system. The respiratory rhythm, directly and indirectly, affects the central nervous system (CNS). This article describes and reviews these influences, containing, for the first time, information on this subject in a single text. The ability of breath to move the brain mass and determine patterns of neural oscillation will be discussed. The role of the diaphragm in influencing motor expression and its effect on intracranial blood shifts in respiratory activity will also be discussed. It is known that the diaphragm can have multiple uses in improving the symptomatological picture of chronic diseases, but there is no current, concrete data on the effects that the rehabilitative training or manual approaches could have on the patient; in particular, on his/her cognitive and cerebral aspects in general.

Keywords: breathing; diaphragm; neural oscillation; phrenic nerve; vagus nerve.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

    1. The continuity of the body: hypothesis of treatment of the five diaphragms. Bordoni B, Zanier E. J Altern Complement Med. 2015;21:237–242.
    1. Network of breathing. Multifunctional role of the diaphragm: a review. Bordoni B. Adv Respir Med. 2017;85:290–291.
    1. Low-back pain and gastroesophageal reflux in patients with COPD: the disease in the breath. Bordoni B, Marelli F, Morabito B, Sacconi B, Caiazzo P, Castagna R. Int J Chron Obstruct Pulmon Dis. 2018;13:325–334.
    1. Manual evaluation of the diaphragm muscle. Bordoni B, Marelli F, Morabito B, Sacconi B. Int J Chron Obstruct Pulmon Dis. 2016;11:1949–1956.
    1. Failed back surgery syndrome: review and new hypotheses. Bordoni B, Marelli F. J Pain Res. 2016;9:17–22.
    1. A review of analgesic and emotive breathing: a multidisciplinary approach. Bordoni B, Marelli F, Bordoni G. J Multidiscip Healthc. 2016;9:97–102.
    1. Depression, anxiety and chronic pain in patients with chronic obstructive pulmonary disease: the influence of breath. Bordoni B, Marelli F, Morabito B, Sacconi B. Monaldi Arch Chest Dis. 2017;87:811.
    1. Depression and anxiety in patients with chronic heart failure. Bordoni B, Marelli F, Morabito B, Sacconi B. Future Cardiology. 2018;14
    1. Anatomic connections of the diaphragm: influence of respiration on the body system. Bordoni B, Zanier E. J Multidiscip Healthc. 2013;6:281–291.
    1. The subdiaphragmatic part of the phrenic nerve - morphometry and connections to autonomic ganglia. Loukas M, Du Plessis M, Louis RG Jr, Tubbs RS, Wartmann CT, Apaydin N. Clin Anat. 2016;29:120–128.
    1. Vagus nerve stimulation. Howland RH. Curr Behav Neurosci Rep. 2014;1:64–73.
    1. Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Yuan H, Silberstein SD. Headache. 2016;56:71–78.
    1. Chronic heart failure: contemporary diagnosis and management. Ramani GV, Uber PA, Mehra MR. Mayo Clin Proc. 2010;85:180–195.
    1. The lower cranial nerves: IX, X, XI, XII. Sarrazin JL, Toulgoat F, Benoudiba F. Diagn Interv Imaging. 2013;94:1051–1062.
    1. Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Verlinden TJ, Rijkers K, Hoogland G, Herrler A. Acta Neurol Scand. 2016;133:173–182.
    1. Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Seki A, Green HR, Lee TD, et al. Heart Rhythm. 2014;11:1411–1417.
    1. Coexisting right nonrecurrent and right recurrent inferior laryngeal nerves: a rare and controversial entity: report of a case and review of the literature. Obaid T, Kulkarni N, Pezzi TA, Turkeltaub AE, Pezzi CM. Surg Today. 2014;44:2392–2396.
    1. Phrenic vagal and hypoglossal activities in rat: pre-inspiratory, inspiratory, expiratory components. Leiter JC, St-John WM. Respir Physiol Neurobiol. 2004;142:115–126.
    1. The tongue after whiplash: case report and osteopathic treatment. Bordoni B, Marelli F, Morabito B. Int Med Case Rep J. 2016;9:179–182.
    1. Computerized screening for cognitive impairment in patients with COPD. Campman C, van Ranst D, Meijer JW, Sitskoorn M. Int J Chron Obstruct Pulmon Dis. 2017;12:3075–3083.
    1. Cognitive deficits in obstructive sleep apnea: insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation. Olaithe M, Bucks RS, Hillman DR, Eastwood PR. Sleep Med Rev. 2017;38:39–49.
    1. The complexities of fibromyalgia and its comorbidities. Lichtenstein A, Tiosano S, Amital H. Curr Opin Rheumatol. 2017;30:94–100.
    1. Muscle performance in patients with fibromyalgia. Okumus M, Gokoglu F, Kocaoglu S, Ceceli E, Yorgancioglu ZR. . Singapore Med J. 2006;47:752–756.
    1. Cognitive impairment in chronic obstructive pulmonary disease and chronic heart failure: a systematic review and meta-analysis of observational studies. Yohannes AM, Chen W, Moga AM, Leroi I, Connolly MJ. J Am Med Dir Assoc. 2017;18:451.
    1. The fascial system and exercise intolerance in patients with chronic heart failure: hypothesis of osteopathic treatment. Bordoni B, Marelli F. J Multidiscip Healthc. 2015;8:489–494.
    1. The cognitive impact of chronic low back pain: positive effect of multidisciplinary pain therapy. Schiltenwolf M, Akbar M, Neubauer E, Gantz S, Flor H, Hug A, Wang H. Scand J Pain. 2017;17:273–278.
    1. Postural function of the diaphragm in persons with and without chronic low back pain. Kolar P, Sulc J, Kyncl M, et al. J Orthop Sports Phys Ther. 2012;42:352–362.
    1. Cranial rhythmic impulse related to the Traube-Hering-Mayer oscillation: comparing laser-Doppler flowmetry and palpation. Nelson KE, Sergueef N, Lipinski CM, Chapman Chapman, Glonek T. . J Am Osteopath Assoc. 2001;101:163–173.
    1. Sutherland's legacy in the new millennium: the osteopathic cranial model and modern osteopathy. Bordoni B, Zanier E. . Adv Mind Body Med. 2015;29:15–21.
    1. Brain and cerebrospinal fluid motion: real-time quantification with M-mode MR imaging. Maier SE, Hardy CJ, Jolesz FA. Radiology. 1994;193:477–483.
    1. Characterization of cardiac- and respiratory-driven cerebrospinal fluid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Takizawa K, Matsumae M, Sunohara S, Yatsushiro S, Kuroda K. Fluids Barriers CNS. 2017;14:25.
    1. Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations. Wszedybyl-Winklewska M, Wolf J, Swierblewska E, et al. PLoS One. 2017;12:179503.
    1. The cerebrospinal fluid and barriers - anatomic and physiologic considerations. Tumani H, Huss A, Bachhuber F. Handb Clin Neurol. 2017;146:21–32.
    1. Modelling of subarachnoid space width changes in apnoea resulting as a function of blood flow parameters. Kalicka R, Mazur K, Wolf J, Frydrychowski AF, Narkiewicz K, Winklewski PJ. Microvasc Res. 2017;113:16–21.
    1. Cerebrospinal fluid stasis and its clinical significance. Whedon JM, Glassey D. Altern Ther Health Med. 2009;15:54–60.
    1. Reflections on osteopathic fascia treatment in the peripheral nervous system. Bordoni B, Bordoni G. J Pain Res. 2015;8:735–740.
    1. Pulsatile movement of the optic nerve head and the peripapillary retina in normal subjects and in glaucoma. Singh K, Dion C, Godin AG, et al. Invest Ophthalmol Vis Sci. 2012;53:7819–7824.
    1. Noninvasive imaging of pulsatile movements of the optic nerve head in normal human subjects using phase-sensitive spectral domain optical coherence tomography. An L, Chao J, Johnstone M, Wang RK. Opt Lett. 2013;38:1512–1514.
    1. Nasal respiration entrains human limbic oscillations and modulates cognitive function. Zelano C, Jiang H, Zhou G, Arora N, Schuele S, Rosenow J, Gottfried JA. J Neurosci. 2016;36:12448–12467.
    1. Breathing as a fundamental rhythm of brain function. Heck DH, McAfee SS, Liu Y, et al. Front Neural Circuits. 2017;10:115.
    1. Breathing above the brain stem: volitional control and attentional modulation in humans. Herrero JL, Khuvis S, Yeagle E, Cerf M, Mehta AD. J Neurophysiol. 2018;119:145–159.
    1. Rhythms of the body, rhythms of the brain: respiration, neural oscillations, and embodied cognition. Varga S, Heck DH. Conscious Cogn. 2017;56:77–90.
    1. Organization of prefrontal network activity by respiration-related oscillations. Biskamp J, Bartos M, Sauer JF. Sci Rep. 2017;7:45508.
    1. Speed and oscillations medial septum integration of attention and navigation. Tsanov M. Front Syst Neurosci. 2017;11:67.
    1. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. Tsanov M. Eur J Neurosci. 2017;Oct:17.
    1. Respiratory rhythm generation: the whole is greater than the sum of the parts. Morgado-Valle C, Beltran-Parrazal L. Adv Exp Med Biol. 2017;1015:147–161.
    1. Respiratory rhythm generation: triple oscillator hypothesis. Anderson TM, Ramirez JM. F1000Res. 2017;6:139.
    1. Understanding the rhythm of breathing: so near, yet so far. Feldman JL, Del Negro CA, Gray PA. Annu Rev Physiol. 2013;75:423–452.
    1. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Vianna DM, Brandão ML. . Braz J Med Biol Res. 2003;36:557–566.
    1. Chapter 20 - the periaqueductal gray controls brainstem emotional motor systems including respiration. Holstege G. Prog Brain Res. 2014;209:379–405.

Source: PubMed

3
订阅