Astrocyte regulation of CNS inflammation and remyelination

Kumiko I Claycomb, Kasey M Johnson, Paige N Winokur, Anthony V Sacino, Stephen J Crocker, Kumiko I Claycomb, Kasey M Johnson, Paige N Winokur, Anthony V Sacino, Stephen J Crocker

Abstract

Astrocytes regulate fundamentally important functions to maintain central nervous system (CNS) homeostasis. Altered astrocytic function is now recognized as a primary contributing factor to an increasing number of neurological diseases. In this review, we provide an overview of our rapidly developing understanding of the basal and inflammatory functions of astrocytes as mediators of CNS responsiveness to inflammation and injury. Specifically, we elaborate on ways that astrocytes actively participate in the pathogenesis of demyelinating diseases of the CNS through their immunomodulatory roles as CNS antigen presenting cells, modulators of blood brain barrier function and as a source of chemokines and cytokines. We also outline how changes in the extracellular matrix can modulate astrocytes phenotypically, resulting in dysregulation of astrocytic responses during inflammatory injury. We also relate recent studies describing newly identified roles for astrocytes in leukodystrophies. Finally, we describe recent advances in how adapting this increasing breadth of knowledge on astrocytes has fostered new ways of thinking about human diseases, which offer potential to modulate astrocytic heterogeneity and plasticity towards therapeutic gain. In summary, recent studies have provided improved insight in a wide variety of neuroinflammatory and demyelinating diseases, and future research on astrocyte pathophysiology is expected to provide new perspectives on these diseases, for which new treatment modalities are increasingly necessary.

Figures

Figure 1
Figure 1
Widespread astrogliosis is a prominent neuropathological feature of the twitcher mouse brain. Representative pictures show immunohistochemically labeled glial fibrillary acidic protein (GFAP)+ astrocytes (red) in several regions of the brain, including cerebellum, midbrain, thalamus, and cortex in wildtype C57BL/6 (upper row) and in age-matched twitcher mice (bottom row). Note that highly fibrous GFAP immunoreactivity is observed with greater intensity throughout the twitcher mouse brain, compared to wildtype mouse. Scare bar = 250 μm.

References

    1. De Jager P.L., Hafler D.A. New therapeutic approaches for multiple sclerosis. Annu. Rev. Med. 2007;58:417–432. doi: 10.1146/annurev.med.58.071105.111552.
    1. Runia T.F., van Pelt-Gravesteijn E.D., Hintzen R.Q. Recent gains in clinical multiple sclerosis research. CNS Neurol. Disord. Drug Targets. 2012;11:497–505. doi: 10.2174/187152712801661239.
    1. Shirani A., Zhao Y., Karim M.E., Evans C., Kingwell E., van der Kop M.L., Oger J., Gustafson P., Petkau J., Tremlett H. Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2012;308:247–256. doi: 10.1001/jama.2012.7625.
    1. Stys P.K., Zamponi G.W., van Minnen J., Geurts J.J. Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 2012;13:507–514.
    1. Trapp B.D., Nave K.A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313.
    1. Tsunoda I., Fujinami R.S. Inside-Out versus Outside-In models for virus induced demyelination: Axonal damage triggering demyelination. Springer Semin. Immunopathol. 2002;24:105–125.
    1. Vogel F.S. Demyelinization induced in living rabbits by means of a lipolytic enzyme preparation. J. Exp. Med. 1951;93:297–304.
    1. Oberheim N.A., Goldman S.A., Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol. Biol. 2012;814:23–45.
    1. Chiu F.C., Norton W.T., Fields K.L. The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein, and the fibroblast-type filament protein, vimentin. J. Neurochem. 1981;37:147–155. doi: 10.1111/j.1471-4159.1981.tb05302.x.
    1. Von Herrath M.G., Fujinami R.S., Whitton J.L. Microorganisms and autoimmunity: Making the barren field fertile? Nat. Rev. Microbiol. 2003;1:151–157. doi: 10.1038/nrmicro754.
    1. Ransohoff R.M., Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 2012;12:623–635. doi: 10.1038/nri3265.
    1. Voskuhl R.R., Peterson R.S., Song B., Ao Y., Morales L.B., Tiwari-Woodruff S., Sofroniew M.V. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci. 2009;29:11511–11522. doi: 10.1523/JNEUROSCI.1514-09.2009.
    1. Toft-Hansen H., Fuchtbauer L., Owens T. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia. 2011;59:166–176. doi: 10.1002/glia.21088.
    1. Armulik A., Genove G., Mae M., Nisancioglu M.H., Wallgard E., Niaudet C., He L., Norlin J., Lindblom P., Strittmatter K., et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–561. doi: 10.1038/nature09522.
    1. Daneman R., Zhou L., Kebede A.A., Barres B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468:562–566. doi: 10.1038/nature09513.
    1. Nair A., Frederick T.J., Miller S.D. Astrocytes in multiple sclerosis: A product of their environment. Cell. Mol. Life Sci. 2008;65:2702–2720. doi: 10.1007/s00018-008-8059-5.
    1. Dong Y., Benveniste E.N. Immune function of astrocytes. Glia. 2001;36:180–190. doi: 10.1002/glia.1107.
    1. Prochiantz A., Mallat M. Astrocyte diversity. Ann. N. Y. Acad. Sci. 1988;540:52–63. doi: 10.1111/j.1749-6632.1988.tb27051.x.
    1. Cornet A., Bettelli E., Oukka M., Cambouris C., Avellana-Adalid V., Kosmatopoulos K., Liblau R.S. Role of astrocytes in antigen presentation and naive T-cell activation. J. Neuroimmunol. 2000;106:69–77. doi: 10.1016/S0165-5728(99)00215-5.
    1. Soos J.M., Ashley T.A., Morrow J., Patarroyo J.C., Szente B.E., Zamvil S.S. Differential expression of B7 co-stimulatory molecules by astrocytes correlates with T cell activation and cytokine production. Int. Immunol. 1999;11:1169–1179. doi: 10.1093/intimm/11.7.1169.
    1. Tan L.J., Vanderlugt C.L., McRae B.L., Miller S.D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. III. A role for anergy/deletion. Autoimmunity. 1998;27:13–28.
    1. Kort J.J., Kawamura K., Fugger L., Weissert R., Forsthuber T.G. Efficient presentation of myelin oligodendrocyte glycoprotein peptides but not protein by astrocytes from HLA-DR2 and HLA-DR4 transgenic mice. J. Neuroimmunol. 2006;173:23–34. doi: 10.1016/j.jneuroim.2005.11.014.
    1. Girvin A.M., Gordon K.B., Welsh C.J., Clipstone N.A., Miller S.D. Differential abilities of central nervous system resident endothelial cells and astrocytes to serve as inducible antigen-presenting cells. Blood. 2002;99:3692–3701. doi: 10.1182/blood-2001-12-0229.
    1. De Keyser J., Laureys G., Demol F., Wilczak N., Mostert J., Clinckers R. Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem. Int. 2010;57:446–450. doi: 10.1016/j.neuint.2010.02.012.
    1. Stuve O., Youssef S., Slavin A.J., King C.L., Patarroyo J.C., Hirschberg D.L., Brickey W.J., Soos J.M., Piskurich J.F., Chapman H.A., Zamvil S.S. The role of the MHC class II transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. J. Immunol. 2002;169:6720–6732.
    1. De Keyser J., Wilczak N., Leta R., Streetland C. Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology. 1999;53:1628–1633. doi: 10.1212/WNL.53.8.1628.
    1. John G.R., Chen L., Rivieccio M.A., Melendez-Vasquez C.V., Hartley A., Brosnan C.F. Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J. Neurosci. 2004;24:2837–2845. doi: 10.1523/JNEUROSCI.4789-03.2004.
    1. Nikcevich K.M., Gordon K.B., Tan L., Hurst S.D., Kroepfl J.F., Gardinier M., Barrett T.A., Miller S.D. IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J. Immunol. 1997;158:614–621.
    1. Zeinstra E.M., Wilczak N., Wilschut J.C., Glazenburg L., Chesik D., Kroese F.G., de Keyser J. 5HT4 agonists inhibit interferon-gamma-induced MHC class II and B7 costimulatory molecules expression on cultured astrocytes. J. Neuroimmunol. 2006;179:191–195.
    1. Constantinescu C.S., Tani M., Ransohoff R.M., Wysocka M., Hilliard B., Fujioka T., Murphy S., Tighe P.J., Das Sarma J., Trinchieri G., Rostami A. Astrocytes as antigen-presenting cells: Expression of IL-12/IL-23. J. Neurochem. 2005;95:331–340. doi: 10.1111/j.1471-4159.2005.03368.x.
    1. Chastain E.M., Duncan D.S., Rodgers J.M., Miller S.D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta. 2011;1812:265–274.
    1. Hassan-Zahraee M., Ladiwala U., Lavoie P.M., McCrea E., Sekaly R.P., Owens T., Antel J.P. Superantigen presenting capacity of human astrocytes. J. Neuroimmunol. 2000;102:131–136.
    1. Wang X., Haroon F., Karray S., Martina D., Schluter D. Astrocytic Fas ligand expression is required to induce T-cell apoptosis and recovery from experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2013;43:115–124. doi: 10.1002/eji.201242679.
    1. Aubagnac S., Brahic M., Bureau J.F. Bone marrow chimeras reveal non-H-2 hematopoietic control of susceptibility to Theiler’s virus persistent infection. J. Virol. 2002;76:5807–5812. doi: 10.1128/JVI.76.11.5807-5812.2002.
    1. Carpentier P.A., Getts M.T., Miller S.D. Pro-inflammatory functions of astrocytes correlate with viral clearance and strain-dependent protection from TMEV-induced demyelinating disease. Virology. 2008;375:24–36.
    1. Hertzenberg D., Lehmann-Horn K., Kinzel S., Husterer V., Cravens P.D., Kieseier B.C., Hemmer B., Bruck W., Zamvil S.S., Stuve O., Weber M.S. Developmental maturation of innate immune cell function correlates with susceptibility to central nervous system autoimmunity. Eur J. Immunol. 2013 doi: 10.1002/eji.201343338.
    1. Xiao Y., Jin J., Chang M., Chang J.H., Hu H., Zhou X., Brittain G.C., Stansberg C., Torkildsen O., Wang X., et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat. Med. 2013;19:595–602.
    1. Nimmerjahn A., Kirchhoff F., Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–1318. doi: 10.1126/science.1110647.
    1. Hoek R.M., Ruuls S.R., Murphy C.A., Wright G.J., Goddard R., Zurawski S.M., Blom B., Homola M.E., Streit W.J., Brown M.H., et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200) Science. 2000;290:1768–1771.
    1. Lyons A., Downer E.J., Crotty S., Nolan Y.M., Mills K.H., Lynch M.A. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: A role for IL-4. J. Neurosci. 2007;27:8309–8313. doi: 10.1523/JNEUROSCI.1781-07.2007.
    1. Chew L.J., Fusar-Poli P., Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: Relevance to schizophrenia. Dev. Neurosci. 2013;35:102–129. doi: 10.1159/000346157.
    1. Sierra A., Abiega O., Shahraz A., Neumann H. Janus-faced microglia: Beneficial and detrimental consequences of microglial phagocytosis. Front. Cell. Neurosci. 2013;7 doi: 10.3389/fncel.2013.00006.
    1. Yeo Y.A., Martinez Gomez J.M., Croxford J.L., Gasser S., Ling E.A., Schwarz H. CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species. J. Neuroinflammation. 2012;9:173.
    1. Brand-Schieber E., Werner P., Iacobas D.A., Iacobas S., Beelitz M., Lowery S.L., Spray D.C., Scemes E. Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J. Neurosci. Res. 2005;80:798–808. doi: 10.1002/jnr.20474.
    1. Lutz S.E., Zhao Y., Gulinello M., Lee S.C., Raine C.S., Brosnan C.F. Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J. Neurosci. 2009;29:7743–7752. doi: 10.1523/JNEUROSCI.0341-09.2009.
    1. Paulson H.L., Garbern J.Y., Hoban T.F., Krajewski K.M., Lewis R.A., Fischbeck K.H., Grossman R.I., Lenkinski R., Kamholz J.A., Shy M.E. Transient central nervous system white matter abnormality in X-linked Charcot-Marie-Tooth disease. Ann. Neurol. 2002;52:429–434. doi: 10.1002/ana.10305.
    1. Moore C.S., Milner R., Nishiyama A., Frausto R.F., Serwanski D.R., Pagarigan R.R., Whitton J.L., Miller R.H., Crocker S.J. Astrocytic tissue inhibitor of metalloproteinase-1 (TIMP-1) promotes oligodendrocyte differentiation and enhances CNS myelination. J. Neurosci. 2011;31:6247–6254. doi: 10.1523/JNEUROSCI.5474-10.2011.
    1. Nash B., Thomson C.E., Linington C., Arthur A.T., McClure J.D., McBride M.W., Barnett S.C. Functional duality of astrocytes in myelination. J. Neurosci. 2011;31:13028–13038. doi: 10.1523/JNEUROSCI.1449-11.2011.
    1. Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8:752–758. doi: 10.1038/nn1472.
    1. Honda S., Sasaki Y., Ohsawa K., Imai Y., Nakamura Y., Inoue K., Kohsaka S. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 2001;21:1975–1982.
    1. Shigemoto-Mogami Y., Koizumi S., Tsuda M., Ohsawa K., Kohsaka S., Inoue K. Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J. Neurochem. 2001;78:1339–1349.
    1. Inoue K., Nakajima K., Morimoto T., Kikuchi Y., Koizumi S., Illes P., Kohsaka S. ATP stimulation of Ca2+-dependent plasminogen release from cultured microglia. Br. J. Pharmacol. 1998;123:1304–1310. doi: 10.1038/sj.bjp.0701732.
    1. Hide I., Tanaka M., Inoue A., Nakajima K., Kohsaka S., Inoue K., Nakata Y. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J. Neurochem. 2000;75:965–972.
    1. Ovanesov M.V., Ayhan Y., Wolbert C., Moldovan K., Sauder C., Pletnikov M.V. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection. J. Neuroinflammation. 2008;5:50. doi: 10.1186/1742-2094-5-50.
    1. Tanuma N., Sakuma H., Sasaki A., Matsumoto Y. Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol. 2006;112:195–204. doi: 10.1007/s00401-006-0083-7.
    1. Min K.J., Yang M.S., Kim S.U., Jou I., Joe E.H. Astrocytes induce hemeoxygenase-1 expression in microglia: A feasible mechanism for preventing excessive brain inflammation. J. Neurosci. 2006;26:1880–1887. doi: 10.1523/JNEUROSCI.3696-05.2006.
    1. Muller M., Carter S.L., Hofer M.J., Manders P., Getts D.R., Getts M.T., Dreykluft A., Lu B., Gerard C., King N.J., Campbell I.L. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol. 2007;179:2774–2786.
    1. Wiese S., Karus M., Faissner A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front. Pharmacol. 2012;3:120.
    1. Gutowski N.J., Newcombe J., Cuzner M.L. Tenascin-R and C in multiple sclerosis lesions: Relevance to extracellular matrix remodelling. Neuropathol. Appl. Neurobiol. 1999;25:207–214.
    1. Stoffels J.M., de Jonge J.C., Stancic M., Nomden A., van Strien M.E., Ma D., Siskova Z., Maier O., Ffrench-Constant C., Franklin R.J., et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain. 2013;136:116–131.
    1. Moore C.S., Abdullah S.L., Brown A., Arulpragasam A., Crocker S.J. How factors secreted from astrocytes impact myelin repair. J. Neurosci. Res. 2011;89:13–21. doi: 10.1002/jnr.22482.
    1. Back S.A., Tuohy T.M., Chen H., Wallingford N., Craig A., Struve J., Luo N.L., Banine F., Liu Y., Chang A., et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 2005;11:966–972.
    1. Sosunov A.A., Guilfoyle E., Wu X., McKhann G.M., II, Goldman J.E. Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in alexander disease. J. Neurosci. 2013;33:7439–7450.
    1. Zamanian J.L., Xu L., Foo L.C., Nouri N., Zhou L., Giffard R.G., Barres B.A. Genomic analysis of reactive astrogliosis. J. Neurosci. 2012;32:6391–6410. doi: 10.1523/JNEUROSCI.6221-11.2012.
    1. Eng L.F., Ghirnikar R.S. GFAP and astrogliosis. Brain Pathol. 1994;4:229–237. doi: 10.1111/j.1750-3639.1994.tb00838.x.
    1. Norenberg M.D. Astrocyte responses to CNS injury. J. Neuropathol. Exp. Neurol. 1994;53:213–220. doi: 10.1097/00005072-199405000-00001.
    1. Gomez-Pinilla F., Vu L., Cotman C.W. Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo. J. Neurosci. 1995;15:2021–2029.
    1. McKeon R.J., Jurynec M.J., Buck C.R. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 1999;19:10778–10788.
    1. Leadbeater W.E., Gonzalez A.M., Logaras N., Berry M., Turnbull J.E., Logan A. Intracellular trafficking in neurones and glia of fibroblast growth factor-2, fibroblast growth factor receptor 1 and heparan sulphate proteoglycans in the injured adult rat cerebral cortex. J. Neurochem. 2006;96:1189–1200. doi: 10.1111/j.1471-4159.2005.03632.x.
    1. Lee S.C., Liu W., Dickson D.W., Brosnan C.F., Berman J.W. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J. Immunol. 1993;150:2659–2667.
    1. Rouach N., Calvo C.F., Glowinski J., Giaume C. Brain macrophages inhibit gap junctional communication and downregulate connexin 43 expression in cultured astrocytes. Eur. J. Neurosci. 2002;15:403–407. doi: 10.1046/j.0953-816x.2001.01868.x.
    1. Rouach N., Avignone E., Meme W., Koulakoff A., Venance L., Blomstrand F., Giaume C. Gap junctions and connexin expression in the normal and pathological central nervous system. Biol. Cell. 2002;94:457–475. doi: 10.1016/S0248-4900(02)00016-3.
    1. Crocker S.J., Pagenstecher A., Campbell I.L. The TIMPs tango with MMPs and more in the central nervous system. J. Neurosci. Res. 2004;75:1–11. doi: 10.1002/jnr.10836.
    1. Crocker S.J., Milner R., Pham-Mitchell N., Campbell I.L. Cell and agonist-specific regulation of genes for matrix metalloproteinases and their tissue inhibitors by primary glial cells. J. Neurochem. 2006;98:812–823. doi: 10.1111/j.1471-4159.2006.03927.x.
    1. Welser-Alves J.V., Crocker S.J., Milner R. A dual role for microglia in promoting tissue inhibitor of metalloproteinase (TIMP) expression in glial cells in response to neuroinflammatory stimuli. J. Neuroinflammation. 2011;8:61. doi: 10.1186/1742-2094-8-61.
    1. Fields J., Cisneros I.E., Borgmann K., Ghorpade A. Extracellular regulated kinase 1/2 signaling is a critical regulator of interleukin-1beta-mediated astrocyte tissue inhibitor of metalloproteinase-1 expression. PLoS One. 2013;8:e56891.
    1. Pagenstecher A., Stalder A.K., Kincaid C.L., Shapiro S.D., Campbell I.L. Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am. J. Pathol. 1998;152:729–741.
    1. Crocker S.J., Whitmire J.K., Frausto R.F., Chertboonmuang P., Soloway P.D., Whitton J.L., Campbell I.L. Persistent macrophage/microglial activation and myelin disruption after experimental autoimmune encephalomyelitis in tissue inhibitor of metalloproteinase-1-deficient mice. Am. J. Pathol. 2006;169:2104–2116. doi: 10.2353/ajpath.2006.060626.
    1. Suryadevara R., Holter S., Borgmann K., Persidsky R., Labenz-Zink C., Persidsky Y., Gendelman H.E., Wu L., Ghorpade A. Regulation of tissue inhibitor of metalloproteinase-1 by astrocytes: Links to HIV-1 dementia. Glia. 2003;44:47–56. doi: 10.1002/glia.10266.
    1. Ichiyama T., Kajimoto M., Suenaga N., Maeba S., Matsubara T., Furukawa S. Serum levels of matrix metalloproteinase-9 and its tissue inhibitor (TIMP-1) in acute disseminated encephalomyelitis. J. Neuroimmunol. 2006;172:182–186. doi: 10.1016/j.jneuroim.2005.10.010.
    1. Avolio C., Ruggieri M., Giuliani F., Liuzzi G.M., Leante R., Riccio P., Livrea P., Trojano M. Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J. Neuroimmunol. 2003;136:46–53. doi: 10.1016/S0165-5728(03)00006-7.
    1. Verkhratsky A., Sofroniew M.V., Messing A., deLanerolle N.C., Rempe D., Rodriguez J.J., Nedergaard M. Neurological diseases as primary gliopathies: A reassessment of neurocentrism. ASN Neuro. 2012;4 doi: 10.1042/AN20120010.
    1. Sharma R., Fischer M.T., Bauer J., Felts P.A., Smith K.J., Misu T., Fujihara K., Bradl M., Lassmann H. Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol. 2010;120:223–236. doi: 10.1007/s00401-010-0704-z.
    1. Crocker S.J. Gliodystrophy: Astroglial Heterogeneity in Neurodegenerative Disease. American Society of Neurochemistry; Baltimore, MD, USA: 2012.
    1. Kondo Y., Wenger D.A., Gallo V., Duncan I.D. Galactocerebrosidase-deficient oligodendrocytes maintain stable central myelin by exogenous replacement of the missing enzyme in mice. Proc. Natl. Acad. Sci. USA. 2005;102:18670–18675. doi: 10.1073/pnas.0506473102.
    1. Ijichi K., Brown G.D., Moore C.S., Lee J.P., Winokur P.N., Pagarigan R., Snyder E.Y., Bongarzone E.R., Crocker S.J. MMP-3 mediates psychosine-induced globoid cell formation: Implications for leukodystrophy pathology. Glia. 2013;61:765–777. doi: 10.1002/glia.22471.
    1. Mohri I., Taniike M., Taniguchi H., Kanekiyo T., Aritake K., Inui T., Fukumoto N., Eguchi N., Kushi A., Sasai H., et al. Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J. Neurosci. 2006;26:4383–4393. doi: 10.1523/JNEUROSCI.4531-05.2006.
    1. Hanefeld F., Holzbach U., Kruse B., Wilichowski E., Christen H.J., Frahm J. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics. 1993;24:244–248. doi: 10.1055/s-2008-1071551.
    1. Schiffmann R., Moller J.R., Trapp B.D., Shih H.H., Farrer R.G., Katz D.A., Alger J.R., Parker C.C., Hauer P.E., Kaneski C.R., et al. Childhood ataxia with diffuse central nervous system hypomyelination. Ann. Neurol. 1994;35:331–340. doi: 10.1002/ana.410350314.
    1. Van Der Knaap M.S., Kamphorst W., Barth P.G., Kraaijeveld C.L., Gut E., Valk J. Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology. 1998;51:540–547. doi: 10.1212/WNL.51.2.540.
    1. Van der Knaap M.S., Leegwater P.A., Konst A.A., Visser A., Naidu S., Oudejans C.B., Schutgens R.B., Pronk J.C. Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann. Neurol. 2002;51:264–270. doi: 10.1002/ana.10112.
    1. Leegwater P.A., Vermeulen G., Konst A.A., Naidu S., Mulders J., Visser A., Kersbergen P., Mobach D., Fonds D., van Berkel C.G., et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat. Genet. 2001;29:383–388. doi: 10.1038/ng764.
    1. Dietrich J., Lacagnina M., Gass D., Richfield E., Mayer-Proschel M., Noble M., Torres C., Proschel C. EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy. Nat. Med. 2005;11:277–283.
    1. Van Der Knaap M.S., Pronk J.C., Scheper G.C. Vanishing white matter disease. Lancet Neurol. 2006;5:413–423. doi: 10.1016/S1474-4422(06)70440-9.
    1. Campbell I.L., Hofer M.J., Pagenstecher A. Transgenic models for cytokine-induced neurological disease. Biochim. Biophys. Acta. 2010;1802:903–917. doi: 10.1016/j.bbadis.2009.10.004.
    1. Zimmermann J., Krauthausen M., Hofer M.J., Heneka M.T., Campbell I.L., Muller M. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia. PLoS One. 2013;8:e57307.
    1. Pagenstecher A., Lassmann S., Carson M.J., Kincaid C.L., Stalder A.K., Campbell I.L. Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J. Immunol. 2000;164:4481–4492.
    1. Boztug K., Carson M.J., Pham-Mitchell N., Asensio V.C., DeMartino J., Campbell I.L. Leukocyte infiltration, but not neurodegeneration, in the CNS of transgenic mice with astrocyte production of the CXC chemokine ligand 10. J. Immunol. 2002;169:1505–1515.
    1. Quintana A., Muller M., Frausto R.F., Ramos R., Getts D.R., Sanz E., Hofer M.J., Krauthausen M., King N.J., Hidalgo J., Campbell I.L. Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. J. Immunol. 2009;183:2079–2088. doi: 10.4049/jimmunol.0900242.
    1. Freude S., Hausmann J., Hofer M., Pham-Mitchell N., Campbell I.L., Staeheli P., Pagenstecher A. Borna disease virus accelerates inflammation and disease associated with transgenic expression of interleukin-12 in the central nervous system. J. Virol. 2002;76:12223–12232. doi: 10.1128/JVI.76.23.12223-12232.2002.
    1. Greco T.M., Seeholzer S.H., Mak A., Spruce L., Ischiropoulos H. Quantitative mass spectrometry-based proteomics reveals the dynamic range of primary mouse astrocyte protein secretion. J. Proteome Res. 2010;9:2764–2774. doi: 10.1021/pr100134n.
    1. Jha M.K., Seo M., Kim J.H., Kim B.G., Cho J.Y., Suk K. The secretome signature of reactive glial cells and its pathological implications. Biochim. Biophys. Acta. 2012 doi: 10.1016/j.bbapap.2012.12.006.
    1. Davies S.J., Shih C.H., Noble M., Mayer-Proschel M., Davies J.E., Proschel C. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS One. 2011;6:e17328.
    1. Noble M., Davies J.E., Mayer-Proschel M., Proschel C., Davies S.J. Precursor cell biology and the development of astrocyte transplantation therapies: Lessons from spinal cord injury. Neurotherapeutics. 2011;8:677–693. doi: 10.1007/s13311-011-0071-z.
    1. Han X., Chen M., Wang F., Windrem M., Wang S., Shanz S., Xu Q., Oberheim N.A., Bekar L., Betstadt S., et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell. 2013;12:342–353. doi: 10.1016/j.stem.2012.12.015.
    1. Papadeas S.T., Kraig S.E., O’Banion C., Lepore A.C., Maragakis N.J. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc. Natl. Acad. Sci. USA. 2011;108:17803–17808. doi: 10.1073/pnas.1103141108.

Source: PubMed

3
订阅