Importance of Cardiopulmonary Exercise Testing amongst Subjects Recovering from COVID-19

Gianluigi Dorelli, Michele Braggio, Daniele Gabbiani, Fabiana Busti, Marco Caminati, Gianenrico Senna, Domenico Girelli, Pierantonio Laveneziana, Marcello Ferrari, Giulia Sartori, Luca Dalle Carbonare, Ernesto Crisafulli, On Behalf Of The Respicovid Study Investigators, Gianluigi Dorelli, Michele Braggio, Daniele Gabbiani, Fabiana Busti, Marco Caminati, Gianenrico Senna, Domenico Girelli, Pierantonio Laveneziana, Marcello Ferrari, Giulia Sartori, Luca Dalle Carbonare, Ernesto Crisafulli, On Behalf Of The Respicovid Study Investigators

Abstract

The cardiopulmonary exercise test (CPET) provides an objective assessment of ventilatory limitation, related to the exercise minute ventilation (VE) coupled to carbon dioxide output (VCO2) (VE/VCO2); high values of VE/VCO2 slope define an exercise ventilatory inefficiency (EVin). In subjects recovered from hospitalised COVID-19, we explored the methodology of CPET in order to evaluate the presence of cardiopulmonary alterations. Our prospective study (RESPICOVID) has been proposed to evaluate pulmonary damage's clinical impact in post-COVID subjects. In a subgroup of subjects (RESPICOVID2) without baseline confounders, we performed the CPET. According to the VE/VCO2 slope, subjects were divided into having EVin and exercise ventilatory efficiency (EVef). Data concerning general variables, hospitalisation, lung function, and gas-analysis were also collected. The RESPICOVID2 enrolled 28 subjects, of whom 8 (29%) had EVin. As compared to subjects with EVef, subjects with EVin showed a reduction in heart rate (HR) recovery. VE/VCO2 slope was inversely correlated with HR recovery; this correlation was confirmed in a subgroup of older, non-smoking male subjects, regardless of the presence of arterial hypertension. More than one-fourth of subjects recovered from hospitalised COVID-19 have EVin. The relationship between EVin and HR recovery may represent a novel hallmark of post-COVID cardiopulmonary alterations.

Keywords: COVID-19; cardiopulmonary exercise test; cardiovascular alterations; exercise ventilatory inefficiency; heart rate recovery.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Scatterplot between VE/VCO2 slope and HR recovery. Lines represent the regression with the 95% confidence intervals. Abbreviations: VE/VCO2 slope represents the slope of minute ventilation-VE to carbon dioxide output-VCO2 ratio; HR, heart rate.
Figure 2
Figure 2
Receiver operating curve of HR recovery, performed on subjects with ventilatory inefficiency as test variable. Gray line represents a diagonal of reference.

References

    1. Mo X., Jian W., Su Z., Chen M., Peng H., Peng P., Lei C., Chen R., Zhong N., Li S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020;55:2001217. doi: 10.1183/13993003.01217-2020.
    1. Belli S., Balbi B., Prince I., Cattaneo D., Masocco F., Zaccaria S., Bertalli L., Cattini F., Lomazzo A., Negro F.D., et al. Low physical functioning and impaired performance of activities of daily life in COVID-19 patients who survived hospitalisation. Eur. Respir. J. 2020;56:2002096. doi: 10.1183/13993003.02096-2020.
    1. Society A.T. American College of Chest Physicians ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am. J. Respir. Crit. Care Med. 2003;167:211–277. doi: 10.1164/rccm.167.2.211.
    1. Phillips D.B., Collins S.É., Stickland M.K. Measurement and Interpretation of Exercise Ventilatory Efficiency. Front. Physiol. 2020;11:659. doi: 10.3389/fphys.2020.00659.
    1. Neder J.A., Berton D.C., Arbex F.F., Alencar M.C., Rocha A., Sperandio P.A., Palange P., O’Donnell D.E. Physiological and clinical relevance of exercise ventilatory efficiency in COPD. Eur. Respir. J. 2017;49:1602036. doi: 10.1183/13993003.02036-2016.
    1. Sun X.-G., Hansen J.E., Garatachea N., Storer T.W., Wasserman K. Ventilatory Efficiency during Exercise in Healthy Subjects. Am. J. Respir. Crit. Care Med. 2002;166:1443–1448. doi: 10.1164/rccm.2202033.
    1. Naeije R., Faoro V. The great breathlessness of cardiopulmonary diseases. Eur. Respir. J. 2018;51:1702517. doi: 10.1183/13993003.02517-2017.
    1. Barbosa G.W., Neder J.A., Utida K., O’Donnell D.E., Müller P.D.T. Impaired exercise ventilatory efficiency in smokers with low transfer factor but normal spirometry. Eur. Respir. J. 2017;49:1602511. doi: 10.1183/13993003.02511-2016.
    1. Miller M.R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Crapo R., Enright P., Van Der Grinten C.P.M., Gustafsson P., et al. Standardisation of spirometry. Eur. Respir. J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Quanyer P.H., Tammeling G.J., Cotes J.E., Pedersen O.F., Peslin R., Yernault J.C. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993;16:5–40.
    1. Cotes J.E., Chinn D.J., Quanjer P.H., Roca J., Yernault J.C. Standardisation of the measurement of transfer factor (diffusing capacity). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993;16:41–52.
    1. A Borg G. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–381. doi: 10.1249/00005768-198205000-00012.
    1. American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories American Thoracic Society statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002;166:111–117. doi: 10.1164/ajrccm.166.1.at1102.
    1. Enright P.L., Sherrill D.L. Reference equations for the six-minute walk in healthy adults. Pt 1Am. J. Respir. Crit. Care Med. 1998;158:1384–1387. doi: 10.1164/ajrccm.158.5.9710086.
    1. Mannocci A., Di Thiene D., Del Cimmuto A., Masala D., Boccia A., De Vito E., La Torre G. International Physical Activity Questionnaire: Validation and assessment in an Italian sample. Ital. J. Public Health. 2010;7:369–376.
    1. Gläser S., Obst A., Opitz C.F., Dörr M., Felix S.B., Empen K., Völzke H., Ewert R., Schäper C., Koch B. Peripheral endothelial dysfunction is associated with gas exchange inefficiency in smokers. Respir. Res. 2011;12:53. doi: 10.1186/1465-9921-12-53.
    1. Brischetto M.J., Millman R.P., Peterson D.D., Silage D.A., Pack A.I. Effect of aging on ventilatory response to exercise and CO2. J. Appl. Physiol. 1984;56:1143–1150. doi: 10.1152/jappl.1984.56.5.1143.
    1. McGurk S.P., Blanksby B.A., Anderson M.J. The Relationship of Hypercapnic Ventilatory Responses to Age, Gender and Athleticism. Sports Med. 1995;19:173–183. doi: 10.2165/00007256-199519030-00003.
    1. Salazar-Martínez E., De Matos T.R., Arrans P., Santalla A., Orellana J.N. Ventilatory efficiency response is unaffected by fitness level, ergometer type, age or body mass index in male athletes. Biol. Sport. 2018;35:393–398. doi: 10.5114/biolsport.2018.78060.
    1. Cole C.R., Blackstone E.H., Pashkow F.J., Snader C.E., Lauer M.S. Heart-Rate Recovery Immediately after Exercise as a Predictor of Mortality. N. Engl. J. Med. 1999;341:1351–1357. doi: 10.1056/NEJM199910283411804.
    1. Crisafulli E., Scelfo C., Tzani P., Aiello M., Bertorelli G., Chetta A. Asymptomatic peripheral artery disease can limit maximal exercise capacity in chronic obstructive pulmonary disease patients regardless of airflow obstruction and lung hyperinflation. Eur. J. Prev. Cardiol. 2017;24:990–999. doi: 10.1177/2047487317695629.
    1. Crisafulli E., Vigna M., Ielpo A., Tzani P., Mangia A., Teopompi E., Aiello M., Alfieri V., Bertorelli G., Palange P., et al. Heart rate recovery is associated with ventilatory constraints and excess ventilation during exercise in patients with chronic obstructive pulmonary disease. Eur. J. Prev. Cardiol. 2018;25:1667–1674. doi: 10.1177/2047487318789756.
    1. Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan S., Sehrawat T.S., Bikdeli B., Ahluwalia N., Ausiello J.C., Wan E.Y., et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020;26:1017–1032. doi: 10.1038/s41591-020-0968-3.

Source: PubMed

3
订阅