Acacia Senegal (Gum Arabic) Supplementation Modulate Lipid Profile and Ameliorated Dyslipidemia among Sickle Cell Anemia Patients

Lamis Kaddam, Imad Fadl-Elmula, Omer Ali Eisawi, Haydar Awad Abdelrazig, Amal M Saeed, Lamis Kaddam, Imad Fadl-Elmula, Omer Ali Eisawi, Haydar Awad Abdelrazig, Amal M Saeed

Abstract

Background: Sickle cell disease (SCD) is an inherited haemolytic anemia with a variable course and severity. Knowledge of prognostic biomarkers may help in the establishment of therapeutic intervention, management, and follow-up of patients. There have been scattered reports of low high-density lipoprotein cholesterol (HDL-C) and increased triglyceride (TG) in SCD patients. In addition, TG levels have been suggested to be elevated in patients with increased endothelial activation. An increased TG level has been associated with haemolysis, vascular dysfunction, and increased prevalence of pulmonary hypertension. Gum Arabic (GA) is an edible, dried, gummy exudate from the acacia Senegal tree. Several studies on GA ingestion have shown reduced plasma cholesterol and low-density lipoprotein (LDL) concentrations in both animals and humans. We investigated GA's therapeutic potential to modulate serum lipids in patients with sickle cell anemia.

Methods: This study recruited and documented secondary outcomes in 47 patients (aged 5-42 years) carrying hemoglobin SS. The patients received 30 g/day of GA for 12 weeks. Total cholesterol, TG, LDL, and HDL were measured before and after GA intake. Cobas C311 (Roche, Germany) automated chemistry analyser was used for direct determination of the values of the lipid profile.

Results: GA significantly decreased total cholesterol (TC), TG, and LDL (p = 0.006, 0.04, and 0.02, resp.). GA showed no effect on HDL level. Baseline serum TG and LDL correlated significantly with the hydrogen peroxide (H2O2) level, which is known as an oxidative stress marker (p = 0.003 and 0.04, resp.). None of the lipid profile elements correlated with age.

Conclusion: Our results revealed that dyslipidemia in sickle cell patients is associated with oxidative stress but not associated with age. The findings showed that GA significantly decreased TC, LDL, and TG levels, revealing a novel effect of GA, which is considered a natural dietary fibre that can modulate lipid profile in patients with sickle cell anemia.

Trial registration: This retrospective trial is registered with ClinicalTrials.gov Identifier: NCT02467257 on 3 June, 2015.

Figures

Figure 1
Figure 1
Linear regression between H2O2 and Cholesterol level (r2=149, P=0.008).
Figure 2
Figure 2
Linear regression between H2O2 and Triglycerides level (r2=185, P=0.003).

References

    1. Zorca S., Freeman L., Hildesheim M., et al. Lipid levels in sickle-cell disease associated with haemolytic severity, vascular dysfunction and pulmonary hypertension. British Journal of Haematology. 2010;149(3):436–445. doi: 10.1111/j.1365-2141.2010.08109.x.
    1. Ogunsile F. J., Bediako S. M., Nelson J., et al. Metabolic syndrome among adults living with sickle cell disease. Blood Cells, Molecules, and Diseases. 2019;74:25–29. doi: 10.1016/j.bcmd.2018.10.005.
    1. Oztas Y. E., Sabuncuoglu S., Unal S., Ozgunes H., Ozgunes N. Hypocholesterolemia is associated negatively with hemolysate lipid peroxidation in sickle cell anemia patients. Clinical and Experimental Medicine. 2011;11(3):195–198. doi: 10.1007/s10238-010-0124-3.
    1. Henneberg R., Otuki M. F., Furman A. E., Hermann P., Nascimento A. J., Leonart M. S. Protective effect of flavonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea. Revista Brasileira de Hematologia e Hemoterapia. 2013;35(1):52–55. doi: 10.5581/1516-8484.20130015.
    1. Voskou S., Aslan M., Fanis P., Phylactides M., Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biology. 2015;6:226–239. doi: 10.1016/j.redox.2015.07.018.
    1. Buchowski M. S., Swift L. L., Akohoue S. A., Shankar S. M., Flakoll P. J., Abumrad N. Defects in postabsorptive plasma homeostasis of fatty acids in sickle cell disease. Journal of Parenteral and Enteral Nutrition. 2007;31(4):263–268. doi: 10.1177/0148607107031004263.
    1. Upadhyay R. K. Emerging risk biomarkers in cardiovascular diseases and disorders. Journal of Lipids. 2015;2015:50. doi: 10.1155/2015/971453.971453
    1. Ephraim R. K. D., Adu P., Ake E., et al. Normal non-HDL cholesterol, low total cholesterol, and HDL cholesterol levels in sickle cell disease patients in the steady state: a case-control study of tema metropolis. Journal of Lipids. 2016;2016:5. doi: 10.1155/2016/7650530.7650530
    1. Pikilidou M., Yavropoulou M., Antoniou M., et al. Arterial stiffness and peripheral and central blood pressure in patients with sickle cell disease. The Journal of Clinical Hypertension. 2015;17(9):726–731. doi: 10.1111/jch.12572.
    1. Elsharawy M. A., Moghazy K. M., Shawarby M. A. Atherosclerosis in sickle cell disease - a review. International Journal of Angiology. 2009;18(2):62–66. doi: 10.1055/s-0031-1278326.
    1. Nasir O. Renal and extrarenal effects of gum arabic (Acacia senegal) - what can be learned from animal experiments? Kidney and Blood Pressure Research. 2013;37(4-5):269–279. doi: 10.1159/000350152.
    1. Ahmed A. A., Fedail J. S., Musa H. H., Kamboh A. A., Sifaldin A. Z., Musa T. H. Gum Arabic extracts protect against hepatic oxidative stress in alloxan induced diabetes in rats. Pathophysiology. 2015;22(4):189–194. doi: 10.1016/j.pathophys.2015.08.002.
    1. Ali B. H., Ziada A., Blunden G. Biological effects of gum arabic: a review of some recent research. Food and Chemical Toxicology. 2009;47(1):1–8. doi: 10.1016/j.fct.2008.07.001.
    1. Ali B. H., Al-Husseni I., Beegam S., et al. Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0055242.e55242
    1. Ushida K., Hatanaka H., Inoue R., Tsukahara T., Phillips G. O. Effect of long term ingestion of gum arabic on the adipose tissues of female mice. Food Hydrocolloids. 2011;25(5):1344–1349. doi: 10.1016/j.foodhyd.2010.12.010.
    1. Annison G., Trimble R. P., Topping D. L. Feeding Australian Acacia gums and gum arabic leads to non-starch polysaccharide accumulation in the cecum of rats. Journal of Nutrition. 1995;125(2):283–292.
    1. Ross A. H., Eastwood M. A., Brydon W. G., Anderson J. R., Anderson D. M. A study of the effects of dietary gum arabic in humans. American Journal of Clinical Nutrition. 1983;37(3):368–375. doi: 10.1093/ajcn/37.3.368.
    1. Mee K. A., Gee D. L. Apple fiber and gum Arabic lowers total and low-density lipoprotein cholesterol levels in men with mild hypercholesterolemia. Journal of the Academy of Nutrition and Dietetics. 1997;97(4):422–424. doi: 10.1016/S0002-8223(97)00106-5.
    1. Jensen C. D., Spiller G. A., Gates J. E., Miller A. F., Whittam J. H. The effect of acacia gum and a water-soluble dietary fiber mixture on blood lipids in humans. Journal of the American College of Nutrition. 1993;12(2):147–154. doi: 10.1080/07315724.1993.10718295.
    1. Haskell W. L., Spiller G. A., Jensen C. D., Ellis B. K., Gates J. E. Role of water-soluble dietary fiber in the management of elevated plasma cholesterol in healthy subjects. American Journal of Cardiology. 1992;69(5):433–439. doi: 10.1016/0002-9149(92)90980-D.
    1. Kaddam L., FdleAlmula I., Eisawi O. A., et al. Gum Arabic as fetal hemoglobin inducing agent in sickle cell anemia; in vivo study. BMC Hematology. 2015;15(1):p. 19.
    1. Kaddam L., Fadl-Elmula I., Eisawi O. A., et al. Gum Arabic as novel anti-oxidant agent in sickle cell anemia, phase II trial. BMC Hematology. 2017;17(1):p. 4.
    1. Nasir O., Umbach A. T., Rexhepaj R., et al. Effects of gum arabic (Acacia senegal) on renal function in diabetic mice. Kidney and Blood Pressure Research. 2012;35(5):365–372. doi: 10.1159/000336359.
    1. Fossati P., Prencipe L., Berti G. Enzymic creatinine assay: a new colorimetric method based on hydrogen peroxide measurement. Clinical Chemistry. 1983;29(8):1494–1496.
    1. Soupene E., Larkin S. K., Kuypers F. A. Featured article: depletion of HDL3 high density lipoprotein and altered functionality of HDL2 in blood from sickle cell patients. Experimental Biology and Medicine. 2017;242(12):1244–1253. doi: 10.1177/1535370217706966.
    1. Soupene E., Borja M. S., Borda M., Larkin S. K., Kuypers F. A. Featured article: alterations of lecithin cholesterol acyltransferase activity and apolipoprotein A-I functionality in human sickle blood. Experimental Biology and Medicine. 2016;241(17):1933–1942. doi: 10.1177/1535370216657447.
    1. Ballas S. K., Kesen M. R., Goldberg M. F., et al. Beyond the definitions of the phenotypic complications of sickle cell disease: an update on management. The Scientific World Journal. 2012;2012949535
    1. Hoppe C., Jacob E., Styles L., Kuypers F., Larkin S., Vichinsky E. Simvastatin reduces vaso-occlusive pain in sickle cell anaemia: a pilot efficacy trial. British Journal of Haematology. 2017;177(4):620–629. doi: 10.1111/bjh.14580.
    1. Hoppe C., Kuypers F., Larkin S., Hagar W., Vichinsky E., Styles L. A pilot study of the short-term use of simvastatin in sickle cell disease: effects on markers of vascular dysfunction. British Journal of Haematology. 2011;153(5):655–663. doi: 10.1111/j.1365-2141.2010.08480.x.
    1. Mohamed R. E., Gadour M. O., Adam I. The lowering effect of Gum Arabic on hyperlipidemia in Sudanese patients. Frontiers in Physiology. 2015;6:p. 160.
    1. Babiker R., Elmusharaf K., Keogh M. B., Saeed A. M. Effect of Gum Arabic (Acacia Senegal) supplementation on visceral adiposity index (VAI) and blood pressure in patients with type 2 diabetes mellitus as indicators of cardiovascular disease (CVD): a randomized and placebo-controlled clinical trial. Lipids in Health and Disease. 2018;17(1):p. 56.
    1. Babiker A. O., Kaddam L. A. Risk factors of metabolic syndrome among adult Sudanese sickle cell anemia patients. BMC Hematology. 2018;18(1, article no 18) doi: 10.1186/s12878-018-0110-7.
    1. Armogida M., Nisticò R., Mercuri N. B. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. British Journal of Pharmacology. 2012;166(4):1211–1224. doi: 10.1111/j.1476-5381.2012.01912.x.
    1. Titus J., Chari S., Gupta M., Parekh N. Pro-oxidant and anti-oxidant status in patients of sickle cell anaemia. Indian Journal of Clinical Biochemistry. 2004;19(2):168–172. doi: 10.1007/BF02894279.
    1. Marques de Mattos A., Marino L. V., Ovidio P. P., Jordão A. A., Almeida C. C., Chiarello P. G. Protein oxidative stress and dyslipidemia in dialysis patients. Therapeutic Apheresis and Dialysis. 2012;16(1):68–74. doi: 10.1111/j.1744-9987.2011.01009.x.
    1. Caimi G., Presti R. L., Montana M., et al. Lipid peroxidation, nitric oxide metabolites, and their ratio in a group of subjects with metabolic syndrome. Oxidative Medicine and Cellular Longevity. 2014;2014:8. doi: 10.1155/2014/824756.824756
    1. Hopps E., Noto D., Caimi G., Averna M. R. A novel component of the metabolic syndrome: the oxidative stress. Nutrition, Metabolism & Cardiovascular Diseases. 2010;20(1):72–77. doi: 10.1016/j.numecd.2009.06.002.
    1. Calame W., Weseler A. R., Viebke C., Flynn C., Siemensma A. D. Gum Arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. British Journal of Nutrition. 2008;100(6):1269–1275. doi: 10.1017/S0007114508981447.
    1. Macfarlane G. T., Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. Journal of Clinical Gastroenterology. 2011;45(3):S120–S127. doi: 10.1097/MCG.0b013e31822fecfe.
    1. Everard A., Lazarevic V., Derrien M., et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–2786. doi: 10.2337/db11-0227.
    1. Pachikian B. D., Essaghir A., Demoulin J.-B., et al. Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways. Molecular Nutrition & Food Research. 2013;57(2):347–359. doi: 10.1002/mnfr.201200364.

Source: PubMed

3
订阅