AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine

François Lux, Vu Long Tran, Eloïse Thomas, Sandrine Dufort, Fabien Rossetti, Matteo Martini, Charles Truillet, Tristan Doussineau, Guillaume Bort, Franck Denat, Frédéric Boschetti, Goran Angelovski, Alexandre Detappe, Yannick Crémillieux, Nathalie Mignet, Bich-Thuy Doan, Benoit Larrat, Sébastien Meriaux, Emmanuel Barbier, Stéphane Roux, Peter Fries, Andreas Müller, Marie-Caline Abadjian, Carolyn Anderson, Emmanuelle Canet-Soulas, Penelope Bouziotis, Muriel Barberi-Heyob, Céline Frochot, Camille Verry, Jacques Balosso, Michael Evans, Jacqueline Sidi-Boumedine, Marc Janier, Karl Butterworth, Stephen McMahon, Kevin Prise, Marie-Thérèse Aloy, Dominique Ardail, Claire Rodriguez-Lafrasse, Erika Porcel, Sandrine Lacombe, Ross Berbeco, Awatef Allouch, Jean-Luc Perfettini, Cyrus Chargari, Eric Deutsch, Géraldine Le Duc, Olivier Tillement, François Lux, Vu Long Tran, Eloïse Thomas, Sandrine Dufort, Fabien Rossetti, Matteo Martini, Charles Truillet, Tristan Doussineau, Guillaume Bort, Franck Denat, Frédéric Boschetti, Goran Angelovski, Alexandre Detappe, Yannick Crémillieux, Nathalie Mignet, Bich-Thuy Doan, Benoit Larrat, Sébastien Meriaux, Emmanuel Barbier, Stéphane Roux, Peter Fries, Andreas Müller, Marie-Caline Abadjian, Carolyn Anderson, Emmanuelle Canet-Soulas, Penelope Bouziotis, Muriel Barberi-Heyob, Céline Frochot, Camille Verry, Jacques Balosso, Michael Evans, Jacqueline Sidi-Boumedine, Marc Janier, Karl Butterworth, Stephen McMahon, Kevin Prise, Marie-Thérèse Aloy, Dominique Ardail, Claire Rodriguez-Lafrasse, Erika Porcel, Sandrine Lacombe, Ross Berbeco, Awatef Allouch, Jean-Luc Perfettini, Cyrus Chargari, Eric Deutsch, Géraldine Le Duc, Olivier Tillement

Abstract

AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been observed with different types of irradiations in vitro and in vivo on a large number of cancer types (brain, lung, melanoma, head and neck…). The review concludes with the second generation of AGuIX nanoparticles and the first preliminary results on human.

Conflict of interest statement

CONFLICT OF INTEREST: FL and OT have to disclose the patent WO2011/135101. GLD and OT have to disclose the patent WO2009/053644. These patents protect the AGuIX® NPs described in this publication. SD, GLD, TD, FL and OT are employees from NH TherAguix that is developing the AGuIX NPs and possess shares of this company.

Figures

Figure 1.
Figure 1.
(A) Schematic representation of AGuIX® NPs (gadolinium atoms in green are chelated in DOTAGA ligands grafted to polysiloxane matrix). (B) Hydrodynamic diameter (~3 nm) distribution of AGuIX NPs as obtained by dynamic light scattering. (C) ESI-MS measurements on AGuIX nanoparticles. A mass around 10 kDa is obtained for the particle. Inset is obtained after using deconvolution with a multiplicative correlation algorithm. (D) Zeta potential vs pH for AGuIX NPs. Adapted from.NPs, nanoparticles.
Figure 2.
Figure 2.
(A) Laser-induced breakdown spectroscopy analysis (Gd and Na) after i.v. administration (8 µmol) in mice. (B) MRI first pass kinetics of AGuIX NPs in a male monkey after iv injection of AGuIX NPs. Adapted from. , NPs, nanoparticles.
Figure 3.
Figure 3.
Accumulation of AGuIX NPs in tumours of the CNS. (A) MRI and gadolinium quantification at different time points after administration of AGuIX NPs in 9L-gliosarcoma-bearing rats. (B) MR axial image of the brain before and after intravenous administration of AGuIX NPs in U87MG tumour bearing mice. (C) T1 weighted image of the brain of a B16F10 tumour-bearing mouse after administration of AGuIX NPs. Adapted from,, and. CNS, central nervous system; NPs, nanoparticles.
Figure 4.
Figure 4.
(A) T1 weighted MRI of a pancreatic tumour bearing mouse after i.v. administration of AGuIX NPs. Yellow arrows indicate tumour localization. (B) T1 weighted image of hepatic colorectal cancer metastasis after i.v. administration of molecular agent (Gd-DOTA) and AGuIX NPs. Comparison of contrast-to-noise ratio and signal-to-noise ratio for Gd-DOTA and AGuIX NPs in tumour. (C) In vivo SPECT imaging in the paw of a swarm rat chondrosarcoma orthotopic model after i.v. administration of radiolabelled 111In AGuIX NPs. (D) Ultrashort echo-time MRI axial slices of a lung tumour bearing mouse before and after i.v. administration of AGuIX NPs. (E) PET/CT imaging of a 4T1 tumour bearing mice after i.v. administration of radiolabelled 64Cu AGuIX NPs. Adapted from,–. i.v., intravenous; NPs, nanoparticles; SPECT, single photon emission computed tomography.
Figure 5.
Figure 5.
(A) Optical images of a head and neck SQ20B tumour bearing mouse after intratumoral administration of Cy 5.5 labelled AGuIX NPs. (B) Micro-PET images and biodistribution of HepG2 tumour bearing mice after intraperitoneal administration of radiolabelled 64Cu AGuIX NPs. Animals were sacrificed 9 h, 21 h and 40 h after intraperitoneal administration of the NPs and radioactivity was quantified. (C) MRI and 3D optical images at different time points after administration via the airways of AGuIX NPs labelled by Cy 5.5 in orthotopic NSCLC tumour bearing mice. Adapted from.– 3D, three-dimensional; PET, positron emission tomography.
Figure 6.
Figure 6.
Comparison of lymphadenography with AGuIX NPs and Gd-DOTA. Scale bars: 9.5 mm. Copyright from.NPs,
Figure 7.
Figure 7.
(A) Schematic formation of electron showers and reactive oxygen species obtained after irradiation. (B) Simulation of the deposited dose after irradiation at 2 Gy. Adapted from.
Figure 8.
Figure 8.
Survival of HeLa cells (A, B) or panc1 cells (C, D) after irradiation with 220 kV (A, C) or 6 MV (B, D) with or without AGuIX NPs at different doses. Adapted from and.
Figure 9.
Figure 9.
Survey of CHO (A), SQ20B (B), Cal33 (C) and FaDu (D) under irradiation by hadrons at different doses with or without AGuIX NPs. Adapted from and.
Figure 10.
Figure 10.
Radiosensitization on different preclinical models. (A) Survival curves obtained for 9LGS bearing rats. (B) Survival curves obtained for B16F10 brain metastases bearing mice and irradiation at 7 Gy. (C) Survival curves obtained for capan-1 tumour bearing mice under preclinical (220 kV) irradiation. (D) Survival curves obtained for capan-1 tumour bearing mice under clinical (6 MV) irradiation. (E) Relative tumour progression after intratumoral administration of AGuIX NPs in A375 tumour bearing mice. (F) Relative tumour evolution after intratumoral administration of AGuIX NPs in SQ20B tumour bearing mice. (G) Survival follow-up in a rat xenograft model of chondrosarcoma (SWARM). (H) Survival curve obtained for H358-luc tumour bearing mice after administration of AGuIX NPs by the airways. (I)18F-FDG PET quantitative evaluation before and after irradiation of hepatocellular carcinoma HepG2 tumour bearing mice. Adapted from,–.18F-18-fludeoxyglucose.
Figure 11.
Figure 11.
In vitroand in vivo experiments related to Bi@AGuIX NPs. (A) Qualitative visualization of γH2AX and 53BP1 foci in vitro irradiation of A549 adenocarcinoma cells under 6 MV irradiation. (B) Quantitative measurement of the number of γH2AX and 53BP1 foci per cell after irradiation. (C) Clonogenic assay after irradiation of A549 cells under irradiation at different doses with or without Bi@AGuIX NPs. (D) Biodistribution of Bi@AGuIX NPs after iv. administration in A549 tumour bearing mice evaluated by quantification of Gd and Bi by ICP/MS after sacrifice of the animals at different time points. (E) Evaluation of the tumour growth after treatment for A549 tumour bearing mice. (F) Survival curves obtained after the treatment A549 tumour bearing mice for the different groups. Adapted from.
Figure 12.
Figure 12.
(A) Optical fibre insertion monitored by T2 weighted MRI. (B) Survival curves obtained after illumination for control and PS@AGuIX NPs-treated groups.(C) Survival curves obtained after illumination for control, non-responder and responder groups. (D) Relative growth of the tumour diameters for the different animals and determination of non-responder and responder groups. (E) Relative levels of metabolites measured by MRS 1 day after treatment. (F) Relative levels of metabolites measured by MRS two days after treatment. (G) Relative levels of metabolites measured by MRS 3 days after treatment. Adapted from.MRS, magnetic resonance spectroscopy; NPs, nanoparticles.
Figure 13.
Figure 13.
Illustration of 3D MR imaging of the NanoRAD clinical trial obtained 2 h after i.v. administration of AGuIX NPs. Brain metastases (issued from melanoma, non-small cell lung cancer NSCLC, colon cancer and breast cancer) are targeted by AGuIX NPs while no enhancement of the signal is observed in healthy tissues. NPs, nanoparticles.
Figure 14.
Figure 14.
Protocol of the NanoCOL Phase Ib clinical trial.

References

    1. Sancey L, Lux F, Kotb S, Roux S, Dufort S, Bianchi A, et al. . The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol 2014; 87: 20140134. doi: 10.1259/bjr.20140134
    1. Cui L, Her S, Borst GR, Bristow RG, Jaffray DA, Allen C. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother Oncol 2017; 124: 344–56. doi: 10.1016/j.radonc.2017.07.007
    1. Kim MS, Lee EJ, Kim JW, Chung US, Koh WG, Keum KC, et al. . Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat Oncol J 2016; 34: 230–8. doi: 10.3857/roj.2016.01788
    1. Detappe A, Lux F, Tillement O. Pushing radiation therapy limitations with theranostic nanoparticles. Nanomedicine 2016; 11: 997–9. doi: 10.2217/nnm.16.38
    1. Matsudaira H, Ueno AM, Furuno I. Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to gamma rays. Radiat Res 1980; 84: 144–8. doi: 10.2307/3575225
    1. Le Duc G, Miladi I, Alric C, Mowat P, Bräuer-Krisch E, Bouchet A, et al. . Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011; 5: 9566–74. doi: 10.1021/nn202797h
    1. Bonvalot S, Le Pechoux C, De Baere T, Kantor G, Buy X, Stoeckle E, et al. . First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res 2017; 23: 908–17. doi: 10.1158/1078-0432.CCR-16-1297
    1. Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, et al. . Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010; 21: 85103. doi: 10.1088/0957-4484/21/8/085103
    1. Laurent G, Bernhard C, Dufort S, Jiménez Sánchez G, Bazzi R, Boschetti F, et al. . Minor changes in the macrocyclic ligands but major consequences on the efficiency of gold nanoparticles designed for radiosensitization. Nanoscale 2016; 8: 12054–65. doi: 10.1039/C6NR01228K
    1. Detappe A, Thomas E, Tibbit MW, Kunjachan S, Zavidij O, Parnandi N. Ultrasmall silica-based bismuth gadolinium nanoparticle for dual MR-CT guided radiation therapy. Nano Lett 2017; 17: 1733–40.
    1. Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, et al. . Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys 2016; 94: 189–205. doi: 10.1016/j.ijrobp.2015.09.032
    1. Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol 2018; 63: 02TR01: R01. doi: 10.1088/1361-6560/aa99ce
    1. Lacombe S, Porcel E, Scifoni E. Particle therapy and nanomedicine: state of art and research perspectives. Cancer Nanotechnol 2017; 8: 2–17. doi: 10.1186/s12645-017-0029-x
    1. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, et al. . Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 2011; 1: 18. doi: 10.1038/srep00018
    1. McMahon SJ, Paganetti H, Prise KM. Optimising element choice for nanoparticle radiosensitisers. Nanoscale 2016; 8: 581–9. doi: 10.1039/C5NR07089A
    1. Kotb S, Detappe A, Lux F, Appaix F, Barbier EL, Tran VL, et al. . Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics 2016; 6: 418–27. doi: 10.7150/thno.14018
    1. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9: e1416: e1416. doi: 10.1002/wnan.1416
    1. Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M, NanoImpactNet Consortium . Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine 2013; 8: 449–67. doi: 10.2217/nnm.13.8
    1. Paolillo M, Boselli C, Schinelli S. Glioblastoma under siege: an overview of current therapeutic strategies. Brain Sci 2018; 8: 15. doi: 10.3390/brainsci8010015
    1. Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2011; 2: 118–40. doi: 10.1021/cn100100e
    1. Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, et al. . Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics 2015; 5: 1030–44. doi: 10.7150/thno.11642
    1. Wáng YX, Idée JM. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017; 7: 88–122. doi: 10.21037/qims.2017.02.09
    1. Wang YX. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol 2015; 21: 13400–2. doi: 10.3748/wjg.v21.i47.13400
    1. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. . Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011; 103: 317–24. doi: 10.1007/s11060-010-0389-0
    1. Gad SC, Sharp KL, Montgomery C, Payne JD, Goodrich GP. Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). Int J Toxicol 2012; 31: 584–94. doi: 10.1177/1091581812465969
    1. Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, et al. . Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010; 16: 6139–49. doi: 10.1158/1078-0432.CCR-10-0978
    1. ..
    1. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, et al. . Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 2014; 6: 260ral149. doi: 10.1126/scitranslmed.3009524
    1. Verry C, Dufort S, Barbier EL, Montigon O, Peoc'h M, Chartier P, et al. . MRI-guided clinical 6-MV radiosensitization of glioma using a unique gadolinium-based nanoparticles injection. Nanomedicine 2016; 11: 2405–17. doi: 10.2217/nnm-2016-0203
    1. Sancey L, Kotb S, Truillet C, Appaix F, Marais A, Thomas E, et al. . Long-term in vivo clearance of gadolinium-based AGuIX (Activation and Guiding of Irradiation by X-Ray) nanoparticles and their biocompatibility after systemic injection. ACS Nano 2015; 9: 2477–88.
    1. Popović Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, et al. . A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl 2010; 49: 8649–52. doi: 10.1002/anie.201003142
    1. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017; 108: 25–38. doi: 10.1016/j.addr.2016.04.025
    1. Lux F, Mignot A, Mowat P, Louis C, Dufort S, Bernhard C. Ultrasmall rigid platforms as multimodal probes for medical applications. In: Int A. C, ed. 51; 2011. pp 12299–3303.
    1. Mignot A, Truillet C, Lux F, Sancey L, Louis C, Denat F, et al. . A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chemistry 2013; 19: 6122–36. doi: 10.1002/chem.201203003
    1. Bianchi A, Dufort S, Lux F, Fortin PY, Tassali N, Tillement O, et al. . Targeting and in vivo imaging of non-small-cell lung cancer using nebulized multimodal contrast agents. Proc Natl Acad Sci U S A 2014; 111: 9247–52. doi: 10.1073/pnas.1402196111
    1. .
    1. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. . Renal clearance of quantum dots. Nat Biotechnol 2007; 25: 1165–70. doi: 10.1038/nbt1340
    1. Kotb S, Piraquive J, Lamberton F, Lux F, Verset M, Di Cataldo V, et al. . Safety Evaluation and Imaging Properties of Gadolinium-Based Nanoparticles in nonhuman primates. Sci Rep 2016; 6: 35053. doi: 10.1038/srep35053
    1. Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V, et al. . 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 2016; 6: 29936. doi: 10.1038/srep29936
    1. Dufort S, Le Duc G, Salomé M, Bentivegna V, Sancey L, Bräuer-Krisch E, et al. . The high radiosensitizing efficiency of a trace of gadolinium-based nanoparticles in tumors. Sci Rep 2016; 6: 29678. doi: 10.1038/srep29678
    1. Bianchi A, Moncelet D, Lux F, Plissonneau M, Rizzitelli S, Ribot EJ, et al. . Orotracheal administration of contrast agents: a new protocol for brain tumor targeting. NMR Biomed 2015; 28: 738–46. doi: 10.1002/nbm.3295
    1. Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A, et al. . Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol 2014; 5: 4. doi: 10.1186/s12645-014-0004-8
    1. Bouziotis P, Stellas D, Thomas E, Truillet C, Tsoukalas C, Lux F, et al. . 68Ga-radiolabeled AGuIX nanoparticles as dual-modality imaging agents for PET/MRI-guided radiation therapy. Nanomedicine 2017; 12: 1561–74. doi: 10.2217/nnm-2017-0032
    1. Truillet C, Thomas E, Lux F, Huynh LT, Tillement O, Evans MJ. Synthesis and characterization of (89)zr-labeled ultrasmall nanoparticles. Mol Pharm 2016; 13: 2596–601. doi: 10.1021/acs.molpharmaceut.6b00264
    1. Truillet C, Lux F, Tillement O, Dugourd P, Antoine R. Coupling of HPLC with electrospray ionization mass spectrometry for studying the aging of ultrasmall multifunctional gadolinium-based silica nanoparticles. Anal Chem 2013; 85: 10440–7. doi: 10.1021/ac402429p
    1. Detappe A, Kunjachan S, Sancey L, Motto-Ros V, Biancur D, Drane P, et al. . Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J Control Release 2016; 238: 103–13. doi: 10.1016/j.jconrel.2016.07.021
    1. Fries P, Morelli JN, Lux F, Tillement O, Schneider G, Buecker A. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6: 559–73. doi: 10.1002/wnan.1291
    1. Miot-Noirault E, Vidal A, Morlieras J, Bonazza P, Auzeloux P, Besse S, et al. . Small rigid platforms functionalization with quaternary ammonium: targeting extracellular matrix of chondrosarcoma. Nanomedicine 2014; 10: 1887–95. doi: 10.1016/j.nano.2014.06.011
    1. Dufort S, Bianchi A, Henry M, Lux F, Le Duc G, Josserand V, et al. . Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 2015; 11: 215–21. doi: 10.1002/smll.201401284
    1. Miladi I, Aloy MT, Armandy E, Mowat P, Kryza D, Magné N, et al. . Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 2015; 11: 247–57. doi: 10.1016/j.nano.2014.06.013
    1. Hu P, Cheng D, Huang T, Banizs AB, Xiao J, Liu G, et al. . Evaluation of novel 64Cu-Labeled theranostic gadolinium-based nanoprobes in hepg2 tumor-bearing nude mice. Nanoscale Res Lett 2017; 12: 523. doi: 10.1186/s11671-017-2292-5
    1. Bianchi A, Lux F, Tillement O, Crémillieux Y. Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles. Magn Reson Med 2013; 70: 1419–26. doi: 10.1002/mrm.24580
    1. Bianchi A, Dufort S, Lux F, Courtois A, Tillement O, Coll JL, et al. . Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI. MAGMA 2014; 27: 303–16. doi: 10.1007/s10334-013-0412-5
    1. Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. . Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 2010; 28: 1300–3. doi: 10.1038/nbt.1696
    1. Tassali N, Bianchi A, Lux F, Raffard G, Sanchez S, Tillement O, et al. . MR imaging, targeting and characterization of pulmonary fibrosis using intra-tracheal administration of gadolinium-based nanoparticles. Contrast Media Mol Imaging 2016; 11: 396–404. doi: 10.1002/cmmi.1703
    1. Müller A, Fries P, Jelvani B, Lux F, Rübe CE, Kremp S, et al. . Magnetic resonance lymphography at 9.4 t using a gadolinium-based nanoparticle in rats: investigations in healthy animals and in a hindlimb lymphedema model. Invest Radiol 2017; 52: 725–33. doi: 10.1097/RLI.0000000000000398
    1. Lux F, Detappe A, Dufort S, Sancey L, Louis C, Carme S, et al. . Nanoparticules ultrafines en radiothérapie : le cas des AGuIX. Cancer/Radiothérapie 2015; 19(6-7): 508–14. doi: 10.1016/j.canrad.2015.05.019
    1. Mowat P, Mignot A, Rima W, Lux F, Tillement O, Roulin C, et al. . In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells. J Nanosci Nanotechnol 2011; 11: 7833–9. doi: 10.1166/jnn.2011.4725
    1. Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomedicine 2014; 10: 1751–5. doi: 10.1016/j.nano.2014.06.004
    1. Detappe A, Kunjachan S, Rottmann J, Robar J, Tsiamas P, Korideck H, et al. . AGuIX nanoparticles as a promising platform for image-guided radiation therapy. Cancer Nanotechnol 2015; 6: 4. doi: 10.1186/s12645-015-0012-3
    1. Simonet S, Rodriguez-Lafrasse C, Beal D, Gerbaud S, Malesys C, Tillement O et al. . The use of gadolinium-based nanparticles (AGuIX®) to counteract the radioresistance of HNSCC : from cellular uptake to subcellular damage Submitted.
    1. Porcel E, Tillement O, Lux F, Mowat P, Usami N, Kobayashi K, et al. . Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomedicine 2014; 10: 1601–8. doi: 10.1016/j.nano.2014.05.005
    1. Schlathölter T, Eustache P, Porcel E, Salado D, Stefancikova L, Tillement O, et al. . Improving proton therapy by metal-containing nanoparticles: nanoscale insights. Int J Nanomedicine 2016; 11: 1549–56. doi: 10.2147/IJN.S99410
    1. Stefančíková L, Porcel E, Eustache P, Li S, Salado D, Marco S, et al. . Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol 2014; 5: 6. doi: 10.1186/s12645-014-0006-6
    1. Wozny AS, Aloy MT, Alphonse G, Magné N, Janier M, Tillement O, et al. . Gadolinium-based nanoparticles as sensitizing agents to carbon ions in head and neck tumor cells. Nanomedicine 2017; 13: 2655–60. doi: 10.1016/j.nano.2017.07.015
    1. Detappe A, Kunjachan S, Drané P, Kotb S, Myronakis M, Biancur DE, et al. . Key clinical beam parameters for nanoparticle-mediated radiation dose amplification. Sci Rep 2016; 6: 34040. doi: 10.1038/srep34040
    1. Morlieras J, Dufort S, Sancey L, Truillet C, Mignot A, Rossetti F, et al. . Functionalization of small rigid platforms with cyclic RGD peptides for targeting tumors overexpressing αvβ3-integrins. Bioconjug Chem 2013; 24: 1584–97. doi: 10.1021/bc4002097
    1. Miot-Noirault E, Vidal A, Morlieras J, Bonazza P, Auzeloux P, Besse S, et al. . Small rigid platforms functionalization with quaternary ammonium: targeting extracellular matrix of chondrosarcoma. Nanomedicine 2014; 10: 1887–95. doi: 10.1016/j.nano.2014.06.011
    1. Dentamaro M, Lux F, Vander Elst L, Dauguet N, Montante S, Moussaron A, et al. . Chemical and in vitro characterizations of a promising bimodal AGuIX probe able to target apoptotic cells for applications in MRI and optical imaging. Contrast Media Mol Imaging 2016; 11: 381–95. doi: 10.1002/cmmi.1702
    1. Plissonneau M, Pansieri J, Heinrich-Balard L, Morfin JF, Stransky-Heilkron N, Rivory P, et al. . Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting. J Nanobiotechnology 2016; 14: 60. doi: 10.1186/s12951-016-0212-y
    1. Pansieri J, Plissonneau M, Stransky-Heilkron N, Dumoulin M, Heinrich-Balard L, Rivory P, et al. . Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine 2017; 12: 1675–87. doi: 10.2217/nnm-2017-0079
    1. Csajbók E, Baranyai Z, Bányai I, Brücher E, Király R, Müller-Fahrnow A, et al. . Equilibrium, 1H and 13C NMR spectroscopy, and X-ray diffraction studies on the complexes Bi(DOTA)- and Bi(DO3A-Bu. Inorg Chem 2003; 42: 2342–9. doi: 10.1021/ic0261272
    1. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev 2015; 115: 1990–2042. doi: 10.1021/cr5004198
    1. Chouikrat R, Seve A, Vanderesse R, Benachour H, Barberi-Heyob M, Richeter S, et al. . Non polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr Med Chem 2012; 19: 781–92. doi: 10.2174/092986712799034897
    1. Kim H, Chung K, Lee S, Kim DH, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8: 23–45. doi: 10.1002/wnan.1347
    1. Toussaint M, Pinel S, Auger F, Durieux N, Thomassin M, Thomas E, et al. . Proton MR spectroscopy and diffusion mr imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics 2017; 7: 436–51. doi: 10.7150/thno.17218
    1. Radiosensitization of Multiple Brain Metastases Using AGuIX Gadolinium Based Nanoparticles (NANO-RAD. : .
    1. AGuIX Gadolinium-based Nanoparticles in Combination With Chemoradiation and Brachytherapy (NANOCOL. : .

Source: PubMed

3
订阅