Exercise Preserves Lean Mass and Performance during Severe Energy Deficit: The Role of Exercise Volume and Dietary Protein Content

Jose A L Calbet, Jesús G Ponce-González, Jaime de La Calle-Herrero, Ismael Perez-Suarez, Marcos Martin-Rincon, Alfredo Santana, David Morales-Alamo, Hans-Christer Holmberg, Jose A L Calbet, Jesús G Ponce-González, Jaime de La Calle-Herrero, Ismael Perez-Suarez, Marcos Martin-Rincon, Alfredo Santana, David Morales-Alamo, Hans-Christer Holmberg

Abstract

The loss of fat-free mass (FFM) caused by very-low-calorie diets (VLCD) can be attenuated by exercise. The aim of this study was to determine the role played by exercise and dietary protein content in preserving the lean mass and performance of exercised and non-exercised muscles, during a short period of extreme energy deficit (~23 MJ deficit/day). Fifteen overweight men underwent three consecutive experimental phases: baseline assessment (PRE), followed by 4 days of caloric restriction and exercise (CRE) and then 3 days on a control diet combined with reduced exercise (CD). During CRE, the participants ingested a VLCD and performed 45 min of one-arm cranking followed by 8 h walking each day. The VLCD consisted of 0.8 g/kg body weight/day of either whey protein (PRO, n = 8) or sucrose (SU, n = 7). FFM was reduced after CRE (P < 0.001), with the legs and the exercised arm losing proportionally less FFM than the control arm [57% (P < 0.05) and 29% (P = 0.05), respectively]. Performance during leg pedaling, as reflected by the peak oxygen uptake and power output (Wpeak), was reduced after CRE by 15 and 12%, respectively (P < 0.05), and recovered only partially after CD. The deterioration of cycling performance was more pronounced in the whey protein than sucrose group (P < 0.05). Wpeak during arm cranking was unchanged in the control arm, but improved in the contralateral arm by arm cranking. There was a linear relationship between the reduction in whole-body FFM between PRE and CRE and the changes in the cortisol/free testosterone ratio (C/FT), serum isoleucine, leucine, tryptophan, valine, BCAA, and EAA (r = -0.54 to -0.71, respectively, P < 0.05). C/FT tended to be higher in the PRO than the SU group following CRE (P = 0.06). In conclusion, concomitant low-intensity exercise such as walking or arm cranking even during an extreme energy deficit results in remarkable preservation of lean mass. The intake of proteins alone may be associated with greater cortisol/free testosterone ratio and is not better than the ingestion of only carbohydrates for preserving FFM and muscle performance in interventions of short duration.

Keywords: VLCD; exercise; obesity; sucrose; very-low-calorie diet; whey protein.

Figures

Figure 1
Figure 1
Schematic illustration of the experimental protocol. PRE, baseline tests; CRE, caloric restriction (13.4 kJ/day) and exercise (45 min arm cranking and 8 h walking per day), for 4 days; CD: 3 days on a diet, isoenergetic with that observed during the PRE phase + reduced exercise; DXA, dual-energy x-ray absorptiometry; IPAQ, international physical activity questionnaire.
Figure 2
Figure 2
Assessment of changes in lean mass (fat-free mass—bone mass) by dual-energy x-ray absorptiometry. PRE, baseline tests; CRE, caloric restriction (13.4 kJ/day) and exercise (45 min arm cranking and 8 h walking per day) for 4 days; CD: 3 days on a diet isoenergetic with that consumed during the PRE phase + reduced exercise. The vertical bars represent the mean values and the error bars the standard error of the mean. Sucrose: in dark colors (n = 7) and whey protein: in light colors (n = 8). *P < 0.05 compared to PRE; †P < 0.05 compared to CRE; &P < 0.05 arms compared to legs.
Figure 3
Figure 3
Changes in performance. Assessment of changes in peak power output (Wpeak) and peak oxygen uptake (VO2peak) in absolute and relative values (LM, lean mass) during two-legged pedaling (A–D), one-arm cranking with the control arm (E–H), and one-arm cranking with the trained arm (I–L). PRE, baseline tests; CRE, caloric restriction (13.4 kJ/day) and exercise (45 min arm cranking and 8 h walking per day) for 4 days; CD, 3 days on a diet isoenergetic with that consumed during the PRE phase + reduced exercise. The vertical bars represent the mean values and the error bars the standard error of the mean. Sucrose (n = 7) and whey protein group (n = 8). *P < 0.05 compared to PRE; †P < 0.05 compared to CRE; $P < 0.05 sucrose compared to whey protein; aP < 0.05 compared to CRE (time main effect); bP < 0.05 compared to CD (time main effect).

References

    1. Achten J., Gleeson M., Jeukendrup A. E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Med. Sci. Sports Exerc. 34, 92–97. 10.1097/00005768-200201000-00015
    1. Afolabi P. R., Jahoor F., Jackson A. A., Stubbs J., Johnstone A. M., Faber P., et al. . (2007). The effect of total starvation and very low energy diet in lean men on kinetics of whole body protein and five hepatic secretory proteins. Am. J. Physiol. Endocrinol. Metab. 293, E1580–E1589. 10.1152/ajpendo.00169.2007
    1. Allerton D. M., Campbell M. D., Gonzalez J. T., Rumbold P. L., West D. J., Stevenson E. J. (2016). Co-ingestion of whey protein with a carbohydrate-rich breakfast does not affect glycemia, insulinemia or subjective appetite following a subsequent meal in healthy males. Nutrients 8:116. 10.3390/nu8030116
    1. Aloia J. F., Vaswani A., Ma R., Flaster E. (1995). To what extent is bone mass determined by fat-free or fat mass? Am. J. Clin. Nutr. 61, 1110–1114.
    1. Amann M., Calbet J. A. (2008). Convective oxygen transport and fatigue. J. Appl. Physiol. 104, 861–870. 10.1152/japplphysiol.01008.2007
    1. Apro W., Blomstrand E. (2010). Influence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle. Acta Physiol. 200, 237–248. 10.1111/j.1748-1716.2010.02151.x
    1. Bachasson D., Decorte N., Wuyam B., Millet G. Y., Verges S. (2016). Original research: central and peripheral quadriceps fatigue in young and middle-aged untrained and endurance-trained men: a comparative study. Exp. Biol. Med. 241, 1844–1852. 10.1177/1535370216654225
    1. Bhasin S., Storer T. W., Berman N., Callegari C., Clevenger B., Phillips J., et al. . (1996). The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N. Engl. J. Med. 335, 1–7. 10.1056/NEJM199607043350101
    1. Bienso R. S., Ringholm S., Kiilerich K., Aachmann-Andersen N. J., Krogh-Madsen R., Guerra B., et al. . (2012). GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance. Diabetes 61, 1090–1099. 10.2337/db11-0884
    1. Blomstrand E., Saltin B. (2001). BCAA intake affects protein metabolism in muscle after but not during exercise in humans. Am. J. Physiol. Endocrinol. Metab. 281, E365–E374.
    1. Blomstrand E., Eliasson J., Karlsson H. K., Kohnke R. (2006). Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 136, 269S–273S.
    1. Boushel R., Gnaiger E., Calbet J. A., Gonzalez-Alonso J., Wright-Paradis C., Sondergaard H., et al. . (2011). Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion 11, 303–307. 10.1016/j.mito.2010.12.006
    1. Boushel R., Gnaiger E., Larsen F. J., Helge J. W., Gonzalez-Alonso J., Ara I., et al. (2015). Maintained peak leg and pulmonary VO despite substantial reduction in muscle mitochondrial capacity. Scand. J. Med. Sci. Sports 25(Suppl. 4), 135–143. 10.1111/sms.12613
    1. Breen L., Philp A., Witard O. C., Jackman S. R., Selby A., Smith K., et al. . (2011). The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J. Physiol. 589, 4011–4025. 10.1113/jphysiol.2011.211888
    1. Cahill G. F., Jr. (2006). Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22. 10.1146/annurev.nutr.26.061505.111258
    1. Calbet J. A., Holst J. J. (2004). Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur. J. Nutr. 43, 127–139. 10.1007/s00394-004-0448-4
    1. Calbet J. A., MacLean D. A. (2002). Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 132, 2174–2182.
    1. Calbet J. A., Moysi J. S., Dorado C., Rodriguez L. P. (1998). Bone mineral content and density in professional tennis players. Calcif. Tissue Int. 62, 491–496. 10.1007/s002239900467
    1. Calbet J. A., Ponce-Gonzalez J. G., Perez-Suarez I. J., de la Calle Herrero Holmberg H. C. (2015). A time-efficient reduction of fat mass in 4 days with exercise and caloric restriction. Scand. J. Med. Sci. Sports 25, 223–233. 10.1111/sms.12194
    1. Chaston T. B., Dixon J. B., O'Brien P. E. (2007). Changes in fat-free mass during significant weight loss: a systematic review. Int. J. Obes. 31, 743–750. 10.1038/sj.ijo.0803483
    1. Clugston G. A., Garlick P. J. (1982). The response of whole-body protein turnover to feeding in obese subjects given a protein-free, low-energy diet for three weeks. Hum. Nutr. Clin. Nutr. 36, 391–397.
    1. Craig C. L., Marshall A. L., Sjöström M., Bauman A. E., Booth M. L., Ainsworth B. E., et al. . (2003). International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 35, 1381–1395. 10.1249/01.MSS.0000078924.61453.FB
    1. Crowley M. A., Matt K. S. (1996). Hormonal regulation of skeletal muscle hypertrophy in rats: the testosterone to cortisol ratio. Eur. J. Appl. Physiol. Occup. Physiol. 73, 66–72. 10.1007/BF00262811
    1. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., et al. . (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 19, 422–424. 10.1096/fj.04-2640fje
    1. Dreyer H. C., Drummond M. J., Pennings B., Fujita S., Glynn E. L., Chinkes D. L., et al. . (2008). Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am. J. Physiol. Endocrinol. Metab. 294, E392–E400. 10.1152/ajpendo.00582.2007
    1. Enoka R. M., Duchateau J. (2016). Translating fatigue to human performance. Med. Sci. Sports Exerc. 48, 2228–2238. 10.1249/MSS.0000000000000929
    1. Eston R. G., Shephard S., Kreitzman S., Coxon A., Brodie D. A., Lamb K. L., et al. . (1992). Effect of very low calorie diet on body composition and exercise response in sedentary women. Eur. J. Appl. Physiol. Occup. Physiol. 65, 452–458. 10.1007/BF00243513
    1. Fernstrom J. D. (2013). Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45, 419–430. 10.1007/s00726-012-1330-y
    1. Fernstrom J. D., Wurtman R. J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178, 414–416. 10.1126/science.178.4059.414
    1. Fernstrom M., Bakkman L., Tonkonogi M., Shabalina I. G., Rozhdestvenskaya Z., Mattsson C. M., et al. . (2007). Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise. J. Appl. Physiol. 102, 1844–1849. 10.1152/japplphysiol.01173.2006
    1. Gandevia S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 81, 1725–1789.
    1. Glynn E. L., Fry C. S., Drummond M. J., Dreyer H. C., Dhanani S., Volpi E., et al. . (2010). Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R533–R540. 10.1152/ajpregu.00077.2010
    1. Guerra B., Ponce-Gonzalez J. G., Morales-Alamo D., Guadalupe-Grau A., Kiilerich K., Fuentes T., et al. . (2014). Leptin signaling in skeletal muscle after bed rest in healthy humans. Eur. J. Appl. Physiol. 114, 345–357. 10.1007/s00421-013-2779-4
    1. Guezennec C. Y., Satabin P., Legrand H., Bigard A. X. (1994). Physical performance and metabolic changes induced by combined prolonged exercise and different energy intakes in humans. Eur. J. Appl. Physiol. Occup. Physiol. 68, 525–530. 10.1007/BF00599524
    1. Harger-Domitrovich S. G., McClaughry A. E., Gaskill S. E., Ruby B. C. (2007). Exogenous carbohydrate spares muscle glycogen in men and women during 10 h of exercise. Med. Sci. Sports Exerc. 39, 2171–2179. 10.1249/mss.0b013e318157a650
    1. Hoie L. H., Bruusgaard D., Thom E. (1993). Reduction of body mass and change in body composition on a very low calorie diet. Int. J. Obes. Relat. Metab. Disord. 17, 17–20.
    1. Holmberg H. C. (2015). The elite cross-country skier provides unique insights into human exercise physiology. Scand. J. Med. Sci. Sports 25(Suppl. 4), 100–109. 10.1111/sms.12601
    1. Howarth K. R., Moreau N. A., Phillips S. M., Gibala M. J. (2009). Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J. Appl. Physiol. 106, 1394–1402. 10.1152/japplphysiol.90333.2008
    1. Jamart C., Benoit N., Raymackers J. M., Kim H. J., Kim C. K., Francaux M. (2012a). Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise. Eur. J. Appl. Physiol. 112, 3173–3177. 10.1007/s00421-011-2287-3
    1. Jamart C., Francaux M., Millet G. Y., Deldicque L., Frere D., Feasson L. (2012b). Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J. Appl. Physiol. 112, 1529–1537. 10.1152/japplphysiol.00952.2011
    1. Janssen I., Fortier A., Hudson R., Ross R. (2002). Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care 25, 431–438. 10.2337/diacare.25.3.431
    1. Janssen I., Ross R. (1999). Effects of sex on the change in visceral, subcutaneous adipose tissue and skeletal muscle in response to weight loss. Int. J. Obes. Relat. Metab. Disord. 23, 1035–1046. 10.1038/sj.ijo.0801038
    1. Jensen M. D., Miles J. M., Gerich J. E., Cryer P. E., Haymond M. W. (1988). Preservation of insulin effects on glucose production and proteolysis during fasting. Am. J. Physiol. 254, E700–E707.
    1. Johnston C. S., Tjonn S. L., Swan P. D. (2004). High-protein, low-fat diets are effective for weight loss and favorably alter biomarkers in healthy adults. J. Nutr. 134, 586–591.
    1. Kimber N. E., Ross J. J., Mason S. L., Speedy D. B. (2002). Energy balance during an ironman triathlon in male and female triathletes. Int. J. Sport Nutr. Exerc. Metab. 12, 47–62. 10.1123/ijsnem.12.1.47
    1. Krieger J. W., Sitren H. S., Daniels M. J., Langkamp-Henken B. (2006). Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression. Am. J. Clin. Nutr. 83, 260–274.
    1. Krug A. L., Macedo A. G., Zago A. S., Rush J. W., Santos C. F., Amaral S. L. (2016). High-intensity resistance training attenuates dexamethasone-induced muscle atrophy. Muscle Nerve 53, 779–788. 10.1002/mus.24906
    1. Longland T. M., Oikawa S. Y., Mitchell C. J., Devries M. C., Phillips S. M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am. J. Clin. Nutr. 103, 738–746. 10.3945/ajcn.115.119339
    1. Martin-Rincon M., Morales-Alamo D., Calbet J. A. L. (2017). Exercise-mediated modulation of autophagy in skeletal muscle. Scand. J. Med. Sci. Sports [Epub ahead of print]. 10.1111/sms.12945
    1. Marks B. L., Rippe J. M. (1996). The importance of fat free mass maintenance in weight loss programmes. Sports Med. 22, 273–281. 10.2165/00007256-199622050-00001
    1. Meeusen R., Watson P., Hasegawa H., Roelands B., Piacentini M. F. (2006). Central fatigue: the serotonin hypothesis and beyond. Sports Med. 36, 881–909. 10.2165/00007256-200636100-00006
    1. Mettler S., Mitchell N., Tipton K. D. (2010). Increased protein intake reduces lean body mass loss during weight loss in athletes. Med. Sci. Sports Exerc. 42, 326–337. 10.1249/MSS.0b013e3181b2ef8e
    1. Muller M. J., Bosy-Westphal A., Kutzner D., Heller M. (2002). Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes. Rev. 3, 113–122. 10.1046/j.1467-789X.2002.00057.x
    1. Nair K. S., Woolf P. D., Welle S. L., Matthews D. E. (1987). Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. Am. J. Clin. Nutr. 46, 557–562.
    1. O'Leary T. J., Collett J., Howells K., Morris M. G. (2017). Endurance capacity and neuromuscular fatigue following high- vs moderate-intensity endurance training: a randomized trial. Scand. J. Med. Sci. Sports. [Epub ahead of print]. 10.1111/sms.12854
    1. Opstad P. K. (2001). Endocrine and metabolic changes during exhaustive multifactorial military stress. results from studies during the ranger training course of the Norwegian Military Academy, in The Effect of Prolonged Military Activities in Man. Physiological and Biochemical Changes. Possible Means of Rapid Recuperation. RTO Meeting Proceedings 42 (Oslo: RTO/NATO; ).
    1. Pasiakos S. M., Cao J. J., Margolis L. M., Sauter E. R., Whigham L. D., McClung J. P., et al. . (2013). Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB J. 27, 3837–3847. 10.1096/fj.13-230227
    1. Phillips S. M. (2011). The science of muscle hypertrophy: making dietary protein count. Proc. Nutr. Soc. 70, 100–103. 10.1017/S002966511000399X
    1. Ponce-Gonzalez J. G., Rodriguez-Garcia L., Losa-Reyna J., Guadalupe-Grau A., Rodriguez-Gonzalez F. G., Diaz-Chico B. N., et al. (2016). Androgen receptor gene polymorphisms influence fat accumulation: a longitudinal study from adolescence to adult age. Scand. J. Med. Sci. Sports 26, 1313–1320. 10.1111/sms.12587
    1. Pozefsky T., Tancredi R. G., Moxley R. T., Dupre J., Tobin J. D. (1976). Effects of brief starvation on muscle amino acid metabolism in nonobese man. J. Clin. Invest. 57, 444–449. 10.1172/JCI108295
    1. Pronk N. P., Donnelly J. E., Pronk S. J. (1992). Strength changes induced by extreme dieting and exercise in severely obese females. J. Am. Coll. Nutr. 11, 152–158.
    1. Rice B., Janssen I., Hudson R., Ross R. (1999). Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 22, 684–691. 10.2337/diacare.22.5.684
    1. Ross R., Rissanen J., Pedwell H., Clifford J., Shragge P. (1996). Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J. Appl. Physiol. 81, 2445–2455.
    1. Sabapathy S., Morris N. R., Schneider D. A. (2006). Ventilatory and gas-exchange responses to incremental exercise performed with reduced muscle glycogen content. J. Sci. Med. Sport 9, 267–273. 10.1016/j.jsams.2006.03.024
    1. Sahlin K., Shabalina I. G., Mattsson C. M., Bakkman L., Fernstrom M., Rozhdestvenskaya Z., et al. . (2010). Ultraendurance exercise increases the production of reactive oxygen species in isolated mitochondria from human skeletal muscle. J. Appl. Physiol. 108, 780–787. 10.1152/japplphysiol.00966.2009
    1. Serrano-Sanchez J. A., Delgado-Guerra S., Olmedillas H., Guadalupe-Grau A., Arteaga-Ortiz R., Sanchis-Moysi J., et al. . (2010). Adiposity and age explain most of the association between physical activity and fitness in physically active men. PLoS ONE 5:e13435. 10.1371/journal.pone.0013435
    1. Shah O. J., Kimball S. R., Jefferson L. S. (2000). Acute attenuation of translation initiation and protein synthesis by glucocorticoids in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 278, E76–E82.
    1. Shaw K. A., Gennat H. C., O'Rourke P., Del Mar C. (2009). Exercise for overweight or obesity. Cochrane Database Syst. Rev. 4:CD003817 10.1002/14651858.CD003817.pub3
    1. Snijders T., Res P. T., Smeets J. S., van Vliet S., van Kranenburg J., Maase K., et al. . (2015). Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J. Nutr. 145, 1178–1184. 10.3945/jn.114.208371
    1. Torres-Peralta R., Morales-Alamo D., Gonzalez-Izal M., Losa-Reyna J., Perez-Suarez I., Izquierdo M., et al. (2016). Task failure during exercise to exhaustion in normoxia and hypoxia is due to reduced muscle activation caused by central mechanisms while muscle metaboreflex does not limit performance. Front. Physiol. 6:414 10.3389/fphys.2015.00414
    1. Umpleby A. M., Scobie I. N., Boroujerdi M. A., Sonksen P. H. (1995). The effect of starvation on leucine, alanine and glucose metabolism in obese subjects. Eur. J. Clin. Invest. 25, 619–626. 10.1111/j.1365-2362.1995.tb01755.x
    1. Van Hall G., Jensen-Urstad M., Rosdahl H., Holmberg H. C., Saltin B., Calbet J. A. (2003). Leg and arm lactate and substrate kinetics during exercise. Am. J. Physiol. Endocrinol. Metab. 284, E193–E205. 10.1152/ajpendo.00273.2002
    1. Vicente-Rodriguez G., Ara I., Perez-Gomez J., Dorado C., Calbet J. A. (2005). Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br. J. Sports Med. 39, 611–616. 10.1136/bjsm.2004.014431
    1. Vogels N., Westerterp-Plantenga M. S. (2007). Successful long-term weight maintenance: a 2-year follow-up. Obesity 15, 1258–1266. 10.1038/oby.2007.147
    1. West D. W., Burd N. A., Coffey V. G., Baker S. K., Burke L. M., Hawley J. A., et al. . (2011). Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am. J. Clin. Nutr. 94, 795–803. 10.3945/ajcn.111.013722
    1. Witard O. C., Jackman S. R., Breen L., Smith K., Selby A., Tipton K. D. (2014). Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 99, 86–95. 10.3945/ajcn.112.055517
    1. Zinner C., Morales-Alamo D., Ortenblad N., Larsen F. J., Schiffer T. A., Willis S. J., et al. . (2016). The physiological mechanisms of performance enhancement with sprint interval training differ between the upper and lower extremities in humans. Front. Physiol. 7:426. 10.3389/fphys.2016.00426

Source: PubMed

3
订阅