Effect of transcranial direct current stimulation on sports performance for two profiles of athletes (power and endurance) (COMPETE): a protocol for a randomised, crossover, double blind, controlled exploratory trial

Yohan Grandperrin, Sidney Grosprêtre, Magali Nicolier, Philippe Gimenez, Chrystelle Vidal, Emmanuel Haffen, Djamila Bennabi, Yohan Grandperrin, Sidney Grosprêtre, Magali Nicolier, Philippe Gimenez, Chrystelle Vidal, Emmanuel Haffen, Djamila Bennabi

Abstract

Background: Transcranial direct current stimulation (tDCS) is promising for improving motor and cognitive performance. Nevertheless, its mechanisms of action are unclear and need to be better characterised according to the stimulated brain area and the type of exercise performed.

Methods/design: This is a double-blind crossover study, organised into two parts: the first is to assess the effects of tDCS on explosive performance (jump task) and the second is to assess the effects on endurance performance (cycling time trial task). Participants, who are recreationally active or athletes (parkour practitioners, cyclists), will receive two active tDCS sessions (over the left dorsolateral prefrontal cortex and right motor cortex) and one sham tDCS session (part A), or two sequences (one active and one sham) of two daily tDCS sessions over 5 days (part B). Motor and cognitive performance will be compared before and after tDCS sessions (part A), and before and after the first session, after the last session and at day 12 and day 30 of each tDCS sequence (part B).

Discussion: This study investigates the acute and repeated effects of tDCS on the motor and cognitive performance of healthy subjects. It will try to evaluate if tDCS could be considered as a neuroenhancement technology according to the physical task investigated (endurance versus explosive).

Trial registration: ClinicalTrials.gov, NCT03937115. Registered on 3 May 2019; retrospectively registered.

Keywords: Cycling; Dorsolateral prefrontal cortex; Endurance performance; Explosive performance; Parkour; Primary motor cortex; Transcranial direct current stimulation.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flow diagram (part A)
Fig. 2
Fig. 2
Study flow diagram (part B)
Fig. 3
Fig. 3
Randomised crossover design for COMPETE (part A) (Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Figure). BART Balloon Analog Risk Task, BIS-10 Barratt Impulsiveness Scale-10, dlPFC dorsolateral prefrontal cortex, EEfRT Effort Expenditure for Rewards Task, M1 primary motor cortex, MCQ Monetary Choice Questionnaire, QIDS-C16 16-Item Quick Inventory of Depressive Symptomatology, Clinician Rating, QIDS-SR16 16-Item Quick Inventory of Depressive Symptomatology, Self-Report
Fig. 4
Fig. 4
Randomised cross-over design for COMPETE (part B) (Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Figure). BART Balloon Analog Risk Task, BIS-10 Barratt Impulsiveness Scale-10, dlPFC dorsolateral prefrontal cortex, EEfRT Effort Expenditure for Rewards Task, M1 primary motor cortex, MCQ Monetary Choice Questionnaire, QIDS-C16 16-Item Quick Inventory of Depressive Symptomatology, Clinician Rating, QIDS-SR16 16-Item Quick Inventory of Depressive Symptomatology, Self-Report

References

    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–1901. doi: 10.1212/WNL.57.10.1899.
    1. Machado DG d S, Unal G, Andrade SM, Moreira A, Altimari LR, Brunoni AR, et al. Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimul. 2019;12:593–605. doi: 10.1016/j.brs.2018.12.227.
    1. Abdelmoula A, Baudry S, Duchateau J. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience. 2016;322:94–103. doi: 10.1016/j.neuroscience.2016.02.025.
    1. Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363–375. doi: 10.1016/j.neuroscience.2016.10.028.
    1. Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci. 2007;26:242–249. doi: 10.1111/j.1460-9568.2007.05633.x.
    1. Barwood MJ, Butterworth J, Goodall S, House JR, Laws R, Nowicky A, et al. The effects of direct current stimulation on exercise performance, pacing and perception in temperate and hot environments. Brain Stimul. 2016;9:842–849. doi: 10.1016/j.brs.2016.07.006.
    1. Kan B, Dundas JE, Nosaka K. Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2013;38:734–739. doi: 10.1139/apnm-2012-0412.
    1. Muthalib M, Kan B, Nosaka K, Perrey S. Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: an fNIRS study. Adv Exp Med Biol. 2013;789:73–79. doi: 10.1007/978-1-4614-7411-1_11.
    1. Angius L, Pascual-Leone A, Santarnecchi E. Brain stimulation and physical performance. In: Marcora S, Sarkar M, editors. Prog Brain Res: Elsevier; 2018. p. 317–39. Disponible sur: . Cité 27 juin 2019.
    1. Sidhu SK, Cresswell AG, Carroll TJ. Corticospinal responses to sustained locomotor exercises: moving beyond single-joint studies of central fatigue. Sports Med. 2013;43:437–449. doi: 10.1007/s40279-013-0020-6.
    1. McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL. Behaviour of the motoneurone pool in a fatiguing submaximal contraction. J Physiol. 2011;589:3533–3544. doi: 10.1113/jphysiol.2011.207191.
    1. Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol. 2006;33:400–405. doi: 10.1111/j.1440-1681.2006.04363.x.
    1. Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;568:291–303. doi: 10.1113/jphysiol.2005.092429.
    1. Thomas R, Stephane P. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol. 2008;102:153–163. doi: 10.1007/s00421-007-0568-7.
    1. Pageaux B. The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med. 2014;44:1319–1320. doi: 10.1007/s40279-014-0198-2.
    1. Robertson CV, Marino FE. A role for the prefrontal cortex in exercise tolerance and termination. J Appl Physiol. 2016;120:464–466. doi: 10.1152/japplphysiol.00363.2015.
    1. Bennabi D, Pedron S, Haffen E, Monnin J, Peterschmitt Y, Van Waes V. Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front Syst Neurosci. 2014;8 Disponible sur: . Cité 4 juin 2019.
    1. Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science. 2003;302:1181–1185. doi: 10.1126/science.1088545.
    1. MacDonald AW, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 2000;288:1835–1838. doi: 10.1126/science.288.5472.1835.
    1. Rutherford HJV, Lindell AK. Thriving and surviving: approach and avoidance motivation and lateralization. Emot Rev. 2011;3:333–343. doi: 10.1177/1754073911402392.
    1. Lattari E, Campos C, Lamego MK, Passos S d S, Neto GM, Rocha NB, et al. Can transcranial direct current stimulation improve muscle power in individuals with advanced resistance training experience? J Strength Cond Res. 2017; Disponible sur: . Cité 5 nov 2018.
    1. Seidel O, Ragert P. Effects of transcranial direct current stimulation of primary motor cortex on reaction time and tapping performance: a comparison between athletes and non-athletes. Front Hum Neurosci. 2019;13 Disponible sur: . Cité 22 juill 2019.
    1. Grosprêtre S, Gimenez P, Martin A. Neuromuscular and electromechanical properties of ultra-power athletes: the traceurs. Eur J Appl Physiol. 2018;118:1361–1371. doi: 10.1007/s00421-018-3868-1.
    1. Post EG, Trigsted SM, Riekena JW, Hetzel S, McGuine TA, Brooks MA, et al. The association of sport specialization and training volume with injury history in youth athletes. Am J Sports Med. 2017;45:1405–1412. doi: 10.1177/0363546517690848.
    1. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2000;10:361–374. doi: 10.1016/S1050-6411(00)00027-4.
    1. Grosprêtre S, Martin A. H reflex and spinal excitability: methodological considerations. J Neurophysiol. 2012;107:1649–1654. doi: 10.1152/jn.00611.2011.
    1. Grosprêtre S, Martin A. Conditioning effect of transcranial magnetic stimulation evoking motor-evoked potential on V-wave response. Physiol Rep. 2014;2(12):e12191.
    1. Kirby KN, Petry NM, Bickel WK. Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. J Exp Psychol Gen. 1999;128:78–87. doi: 10.1037/0096-3445.128.1.78.
    1. Kaplan BA, Lemley SM, Reed DD, Jarmolowicz DP. 21- and 27-Item Monetary Choice Questionnaire Automated Scorers. 2014.
    1. Baylé FJ, Bourdel MC, Caci H, Gorwood P, Chignon JM, Adés J, et al. Factor analysis of french translation of the Barratt impulsivity scale (BIS-10) Can J Psychiatry Rev Can Psychiatr. 2000;45:156–165. doi: 10.1177/070674370004500206.
    1. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55:1621–1626. doi: 10.1212/WNL.55.11.1621.
    1. Godefroy O, Martinaud O, Verny M, Mosca C, Lenoir H, Bretault E, et al. The dysexecutive syndrome of Alzheimer’s disease: the GREFEX study. J Alzheimers Dis. 2014;42:1203–1208. doi: 10.3233/JAD-140585.
    1. Lejuez CW, Read JP, Kahler CW, Richards JB, Ramsey SE, Stuart GL, et al. Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART) J Exp Psychol Appl. 2002;8:75–84. doi: 10.1037/1076-898X.8.2.75.
    1. Treadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH. Worth the “EEfRT”? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PloS One. 2009;4:e6598. doi: 10.1371/journal.pone.0006598.
    1. Rush AJ, Trivedi MH, Ibrahim HM, Carmody TJ, Arnow B, Klein DN, et al. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biol Psychiatry. 2003;54:573–583. doi: 10.1016/S0006-3223(02)01866-8.
    1. Demougeot L, Papaxanthis C. Muscle fatigue affects mental simulation of action. J Neurosci. 2011;31:10712–10720. doi: 10.1523/JNEUROSCI.6032-10.2011.
    1. Rozand V, Lebon F, Papaxanthis C, Lepers R. Effect of mental fatigue on speed-accuracy trade-off. Neuroscience. 2015;297:219–230. doi: 10.1016/j.neuroscience.2015.03.066.
    1. Benner A. Sample size tables for clinical studies. (2nd edn). David Machin, Michael J. Campbell, Peter M. Fayers and Alain P. Y. Pinol, Blackwell Science Ltd., Oxford, 1997. Stat Med. 1999;18:494–495. doi: 10.1002/(SICI)1097-0258(19990228)18:4<494::AID-SIM56>;2-T.
    1. Zar JH. Biostatistical analysis. 2. Englewood Cliffs: Prentice-Hall; 1984.
    1. Edwards DJ, Cortes M, Wortman-Jutt S, Putrino D, Bikson M, Thickbroom G, et al. Transcranial direct current stimulation and sports performance. Front Hum Neurosci. 2017;11 Disponible sur: . Cité 6 juin 2019.

Source: PubMed

3
订阅