Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19

A Hernández, P J Papadakos, A Torres, D A González, M Vives, C Ferrando, J Baeza, A Hernández, P J Papadakos, A Torres, D A González, M Vives, C Ferrando, J Baeza

Abstract

Pneumonia caused by coronavirus, which originated in Wuhan, China, in late 2019, has been spread around the world already becoming a pandemic. Unfortunately, there is not yet a specific vaccine or effective antiviral drug for treating COVID-19. Many of these patients deteriorate rapidly and require intubation and are mechanically ventilated, which is causing the collapse of the health system in many countries due to lack of ventilators and intensive care beds. In this document we review two simple adjuvant therapies to administer, without side effects, and low cost that could be useful for the treatment of acute severe coronavirus infection associated with acute respiratory syndrome (SARS-CoV-2). VitaminC, a potent antioxidant, has emerged as a relevant therapy due to its potential benefits when administered intravenous. The potential effect of vitaminC in reducing inflammation in the lungs could play a key role in lung injury caused by coronavirus infection. Another potential effective therapy is ozone: it has been extensively studied and used for many years and its effectiveness has been demonstrated so far in multiples studies. Nevertheless, our goal is not to make an exhaustive review of these therapies but spread the beneficial effects themselves. Obviously clinical trials are necessaries, but due to the potential benefit of these two therapies we highly recommended to add to the therapeutic arsenal.

Keywords: COVID-19; Ozone; Ozono; SARS-CoV-2; Vitamin C; Vitamina C.

Copyright © 2020 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

References

    1. Pauling L. Vitamin C and common cold. JAMA. 1971; 216:332.[PMID: 5107925 DOI: 10.1001/jama.1971.03180280086025].
    1. Jeong Y.J., Kim J.H., Kang J.S., Lee W.J., Hwang Y.I. Mega-dosevitamin C attenuated lung inflammation in mouse asthmamodel. Anatomy and Cell Biology. 2010;43:294–302.
    1. Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 2008; 34:347-55.[PMID: 17541511 DOI: 10.1007/s00726-007-0555-7].
    1. Frei B, Stocker R, England L, Ames BN. Ascorbate: the most effective antioxidant in human blood plasma. Adv Exp Med Biol. 1990; 264:155-63.[PMID:;1; 2244489 DOI: 10.1007/978-1-4684-5730-8_24].
    1. Dennis JM, Witting PK. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients. 2017; 9:E718.[PMID: 28686196 DOI: 10.3390/nu9070718].
    1. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients 2017; 9:E1211.[PMID: 29099763 DOI: 10.3390/nu9111211].
    1. Ames A.M., Nungester W.J. The relationship between ascorbic acid and phagocytic activity. J Bacteriol. 1947;54:53. [PMID: 20255149]
    1. Van Gorkom GNY, Klein Wolterink RGJ, Van Elssen CHMJ, Wieten L, Germeraad WTV, Bos GMJ. Influence of Vitamin C on Lymphocytes: An Overview. Antioxidants (Basel) 2018; 7:E41.[PMID: 29534432 DOI: 10.3390/antiox7030041].
    1. Bornstein S.R., Yoshida-Hiroi M., Sotiriou S., Levine M., Hartwig H.G., Nussbaum R.L., Eisenhofer G. Impaired adrenal catecholamine system function in mice with deficiency of the ascorbic acid transporter (SVCT2) FASEB J. 2003;17:1928–1930.
    1. Stone K.J., Townsley B.H. The effect of L-ascorbate on catecholamine biosynthesis. Biochem J. 1973;131:611–613. [PMID: 4146453 DOI: 10.1042/bj1310611]
    1. Patak P., Willenberg H.S., Bornstein S.R. Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr Res. 2004;30:871–875. [PMID: 15666839 DOI: 10.1081/ERC-200044126]
    1. May J.M., Qu Z.C., Meredith M.E. Mechanisms of ascorbic acid stimulation of norepinephrine synthesis in neuronal cells. Biochem Biophys Res Commun. 2012;426:148–152. [PMID: 22925890 DOI: 10.1016/j.bbrc.2012.08.054]
    1. Prigge S.T., Mains R.E., Eipper B.A., Amzel L.M. New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci. 2000;57:1236–1259. [PMID: 11028916 DOI: 10.1007/PL00000763]
    1. Das D., Sen C., Goswami A. Effect of Vitamin C on adrenal suppression by etomidate induction in patients undergoing cardiac surgery: A randomized controlled trial. Ann Card Anaesth. 2016;19:410–417. [PMID: 27397444 DOI: 10.4103/0971-9784.185522]
    1. Carr A.C., Shaw G.M., Fowler A.A., Natarajan R. Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19:e418.
    1. Nabzdyk C.S., Bittner E.A., Vitamin C. in the critically ill – indications and controversies. World J Crit Care Med. 2018;7:52–61.
    1. Rizzo J.A., Rowan M.P., Driscoll I.R., Chung K.K., Friedman B.C. Vitamin C in Burn Resuscitation. Crit Care Clin. 2016;32:539–546. [PMID: 27600125 DOI: 10.1016/j.ccc.2016.06.003]
    1. Cartotto R., Greenhalgh D.G., Cancio C. Burn State of the Science: Fluid Resuscitation. J Burn Care Res. 2017;38:e596–e604. [PMID: 28328669 DOI: 10.1097/BCR. 0000000000000541]
    1. Kremer T., Harenberg P., Hernekamp F., Riedel K., Gebhardt M.M., Germann G., Heitmann C., Walther A. High-dose vitamin C treatment reduces capillary leakage after burn plasma transfer in rats. J Burn Care Res. 2010;31:470–479. [PMID: 20354446 DOI: 10.1097/BCR.0b013e3181db5199]
    1. Matsuda T., Tanaka H., Yuasa H., Forrest R., Matsuda H., Hanumadass M., Reyes H. The effects of high-dose vitamin C therapy on postburn lipid peroxidation. J Burn Care Rehabil. 1993;14:624–629. [PMID: 8300697 DOI: 10.1097/00004630-199311000-00007]
    1. Dubick M.A., Williams C., Elgio G.I., Kramer G.C., High-dose Vitamin C. infusion reduces fluid requirements in the resuscitation of burn-injured sheep. Shock. 2005;24:139–144.
    1. Tanaka H., Matsuda T., Miyagantani Y., Yukioka T., Matsuda H., Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 2000;135:326–331. [PMID: 10722036 DOI: 10.1001/archsurg.135.3.326]
    1. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone. Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151:1229–1238. [PMID: 27940189 DOI: 10.1016/j.chest.2016.11.03.
    1. Donnino M. Ascorbic Acid, Corticosteroids, and Thiamine in Sepsis (ACTS) Trial. En: [Internet]. Bethesda (MD): U.S. National Library of Medicine [consultado 8 Ago 2018]. Disponible en: ClinicalTrials. gov. Identificador: NCT01750697.
    1. Stefanovic S. The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock. En: [Internet]. Bethesda (MD): U.S. National Library of Medicine [consultado 8 Ago 2018]. Disponible en: ClinicalTrials. gov. Identificador: NCT03335124.
    1. Zhujiang Hospital. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock (HYVCTTSSS). En: [Internet]. Bethesda (MD): U.S. National Library of Medicine [consultado 8 Ago 2018]. Disponible en: . Identificador: NCT03258684.
    1. Atherton J.G., Kratzing C.C., Fisher A. The effect of ascorbic acid on infection of chick-embryo ciliated tracheal organ cultures by coronavirus. Arch Viro. 1978;56:195–199.
    1. Nathens A.B., Neff M.J., Jurkovich G.J., Klotz P., Farver K., Ruzinski J.T. Randomized, prospective trial of antioxidant supplementation in critically III surgical patients. Ann Surg. 2002;236:814–822.
    1. Sawyer MAJ, Mike JJ, Chavin K. Antioxidant therapy and survival in ARDS. Crit Care Med. 1989; 17, article S153.’.
    1. Bharara A., Grossman C., Grinnan D., Syed A1, Fisher B1, DeWilde C1 Intravenous vitamin C administered as adjunctive therapy for recurrent acute respiratory distress syndrome. Case Reports Crit Care. 2016;2016:8560871.
    1. Fowler A.A., III, Kim C., Lepler L., Malhotra R., Debesa O., Natarajan R. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med. 2017;6:85–90.
    1. Kim W.Y., Jo E.J., Eom J.S., Mok J., Kim M.H., Kim K.U. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: propensity score-basedanalysis of a before-after cohort study. J Crit Care. 2018;47:211–218.
    1. Shanghai Expert Group on Clinical Treatment of New Coronavirus Diseases. Expert Consensus on Comprehensive Treatment of Coronavirus Diseases in Shanghai in 2019 [J /OL]. Chinese Journal of Infectious Diseases, 2020; 38 (2020-03-01). Disponible en: . DOI: 10.3760/cma.j.issn.1000-6680.2020.0016.
    1. WHO. Disinfectants and Disinfection By-Products. Disponible en: .
    1. Baeza-Noci J, Cabo-Soler JR, Moraleda-Gómez M, Menéndez-cepero S, Re L. Revisión WFOT sobre Ozonoterapia Basada en Evidencias. World Federation of Ozone Therapy - WFOT. Bolonia: WFOT; 2015. Disponible en: .
    1. Madu I.G., Belouzard S., Whittaker G.R. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion. Virology. 2009;393:265–271.
    1. Dussault P.H., George A.D., Trullinger T.K. Peroxides as oxidative enzyme inhibitors: Mechanism-based inhibition of a cysteine protease by an amino acid ozonide. Bioorg Med Chem Lett. 1999;9:3255–3258.
    1. Rhee SG, Bae YS, Lee SR, Kwon J, Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation, Sci. STKE. 200;53:PE1, October 10.
    1. Sen R., Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986;47:921–928.
    1. Baeuerle P.A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179.
    1. Hayden M.S., West A.P., Ghosh S. NF-kappaB and the immune response. Oncogene. 2006;25:6758–6780.
    1. Tak P.P., Firestein G.S., NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11.
    1. Bocci V., Borrelli E., Travagli V., Zanardi I. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev. 2009;29:646–682.
    1. Cespedes-Suarez J., Martin-Serrano Y., Carballosa-Peña M.R., Dager-Carballosa D.R. Response of patients with chronic Hepatitis B in one year of treatment with Major Autohemotherapy. J Ozone Ther. 2018;2 DOI: 10.7203/jo3t.2.3.2018.11459.
    1. Cespedes-Suarez J., Martin-Serrano Y., Carballosa-Peña M.R., Dager-Carballosa D.R. The immune response behavior in HIV-AIDS patients treated with Ozone therapy for two years. J Ozone Ther. 2019;2(3) doi: 10.7203/jo3t.2.3.2018.11458.
    1. Rowen R.J., Robins H., Carew K., Kamara M.M., Jalloh M.I. Rapid resolution of hemorrhagic fever (Ebola) in Sierra Leone with ozone therapy. Afr J Infect Dis. 2016;10(1):49–54. doi: 10.4314/ajid.v10i1.10.
    1. Bocci V., Brito G.S. Ozone therapy in critical patients. Rationale of the therapy and proposed guidelines. Rivista Italiana di Ossigeno-Ozonoterapia. 2006;5:7–11.

Source: PubMed

3
订阅