Advances in nutritional research on regulatory T-cells

Wooki Kim, Hyungjae Lee, Wooki Kim, Hyungjae Lee

Abstract

Many clinical and animal studies have shown that certain dietary components exert anti-inflammatory properties that aid in the amelioration of chronic inflammatory diseases. Among the various proposed channels through which dietary components affect immune responses, regulatory T-cells (Tregs) are emerging as key targets for the dietary prevention of chronic inflammatory diseases. In this review, immunoregulation by Tregs is briefly described, followed by a summary of recent advances and possible applications of techniques for the study of Tregs. In addition, this review provides an overview of the current knowledge on Treg regulation by certain dietary components, including vitamins, omega-3 polyunsaturated fatty acids, and polyphenols. The caveats of previous studies are also discussed in order to highlight the distinctions between dietary studies and immunological approaches. Consequently, this review may help to clarify the means by which nutritional components influence Tregs.

Figures

Figure 1
Figure 1
Schematic representation of CD4+ T-cell differentiation and characteristic cytokine production of differentiated subtypes. GALT stands for gut-associated lymphoid tissue.
Figure 2
Figure 2
Flow cytometric analysis of Tregs by intracellular staining of Foxp3. (A) Lymphocytes are gated by forward scatter (FSC) vs. side scatter (SSC), followed by (B) CD4+ T-cell gating on CD4 and TCRβ. (C) Foxp3+ Tregs gated out of CD4+ TCRβ+ T-cells. The numbers indicate the percentage of the gated cells out of the total number of cells within the plot.

References

    1. Jager A., Kuchroo V.K. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand. J. Immunol. 2010;72:173–184. doi: 10.1111/j.1365-3083.2010.02432.x.
    1. Stout R.D., Bottomly K. Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function in macrophages. J. Immunol. 1989;142:760–765.
    1. Heinzel F.P., Sadick M.D., Mutha S.S., Locksley R.M. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc. Natl. Acad. Sci. USA. 1991;88:7011–7015. doi: 10.1073/pnas.88.16.7011.
    1. Chen Z., Lin F., Gao Y., Li Z., Zhang J., Xing Y., Deng Z., Yao Z., Tsun A., Li B. FOXP3 and RORgammat: Transcriptional regulation of Treg and Th17. Int. Immunopharmacol. 2011;11:536–542. doi: 10.1016/j.intimp.2010.11.008.
    1. Chang Q., Wang Y.K., Zhao Q., Wang C.Z., Hu Y.Z., Wu B.Y. Th17 cells are increased with severity of liver inflammation in patients with chronic hepatitis C. J. Gastroenterol. Hepatol. 2012;27:273–278. doi: 10.1111/j.1440-1746.2011.06782.x.
    1. Murdaca G., Colombo B.M., Puppo F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern. Emerg. Med. 2011;6:487–495. doi: 10.1007/s11739-011-0517-7.
    1. Caprioli F., Pallone F., Monteleone G. Th17 immune response in IBD: A new pathogenic mechanism. J. Crohn’s Colitis. 2008;2:291–295. doi: 10.1016/j.crohns.2008.05.004.
    1. Seiderer J., Elben I., Diegelmann J., Glas J., Stallhofer J., Tillack C., Pfennig S., Jurgens M., Schmechel S., Konrad A., et al. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): Upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm. Bowel Dis. 2008;14:437–445. doi: 10.1002/ibd.20339.
    1. Basu R., O’Quinn D.B., Silberger D.J., Schoeb T.R., Fouser L., Ouyang W., Hatton R.D., Weaver C.T. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity. 2012;37:1061–1075. doi: 10.1016/j.immuni.2012.08.024.
    1. Dardalhon V., Awasthi A., Kwon H., Galileos G., Gao W., Sobel R.A., Mitsdoerffer M., Strom T.B., Elyaman W., Ho I.C., et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat. Immunol. 2008;9:1347–1355. doi: 10.1038/ni.1677.
    1. Veldhoen M., Uyttenhove C., van Snick J., Helmby H., Westendorf A., Buer J., Martin B., Wilhelm C., Stockinger B. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 2008;9:1341–1346. doi: 10.1038/ni.1659.
    1. Kaplan M.H. Th9 cells: Differentiation and disease. Immunol. Rev. 2013;252:104–115. doi: 10.1111/imr.12028.
    1. Baker P.J. Homeostatic control of antibody responses: A model based on the recognition of cell-associated antibody by regulatory T cells. Transplant. Rev. 1975;26:3–20.
    1. Baumgart M., Tompkins F., Leng J., Hesse M. Naturally occurring CD4+Foxp3+ regulatory T cells are an essential, IL-10-independent part of the immunoregulatory network in Schistosoma mansoni egg-induced inflammation. J. Immunol. 2006;176:5374–5387.
    1. Yuan X., Malek T.R. Cellular and molecular determinants for the development of natural and induced regulatory T cells. Hum. Immunol. 2012;73:773–782. doi: 10.1016/j.humimm.2012.05.010.
    1. Thornton A.M., Korty P.E., Tran D.Q., Wohlfert E.A., Murray P.E., Belkaid Y., Shevach E.M. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 2010;184:3433–3441. doi: 10.4049/jimmunol.0904028.
    1. Himmel M.E., MacDonald K.G., Garcia R.V., Steiner T.S., Levings M.K. Helios+ and Helios− cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J. Immunol. 2013;190:2001–2008. doi: 10.4049/jimmunol.1201379.
    1. Curotto de Lafaille M.A., Lafaille J.J. Natural and adaptive foxp3+ regulatory T cells: More of the same or a division of labor? Immunity. 2009;30:626–635.
    1. Toda A., Piccirillo C.A. Development and function of naturally occurring CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 2006;80:458–470. doi: 10.1189/jlb.0206095.
    1. Tanoue T., Honda K. Induction of Treg cells in the mouse colonic mucosa: A central mechanism to maintain host-microbiota homeostasis. Semin. Immunol. 2012;24:50–57. doi: 10.1016/j.smim.2011.11.009.
    1. Kurzweil V., Tarangelo A., Oliver P.M. Gastrointestinal microbiota do not significantly contribute to T cell activation or GI inflammation in Ndfip1-cKO mice. PLoS One. 2012;7:e34478. doi: 10.1371/journal.pone.0034478.
    1. Khounlotham M., Kim W., Peatman E., Nava P., Medina-Contreras O., Addis C., Koch S., Fournier B., Nusrat A., Denning T.L., et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity. 2012;37:563–573. doi: 10.1016/j.immuni.2012.06.017.
    1. Koch U., Radtke F. Mechanisms of T cell development and transformation. Annu. Rev. Cell Dev. Biol. 2011;27:539–562. doi: 10.1146/annurev-cellbio-092910-154008.
    1. Fantini M.C., Dominitzki S., Rizzo A., Neurath M.F., Becker C. In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat. Protoc. 2007;2:1789–1794. doi: 10.1038/nprot.2007.258.
    1. Maden M. Retinoid signalling in the development of the central nervous system. Nat. Rev. Neurosci. 2002;3:843–853. doi: 10.1038/nrn963.
    1. Bai A., Lu N., Guo Y., Liu Z., Chen J., Peng Z. All-trans retinoic acid down-regulates inflammatory responses by shifting the Treg/Th17 profile in human ulcerative and murine colitis. J. Leukoc. Biol. 2009;86:959–969. doi: 10.1189/jlb.0109006.
    1. Wu J., Zhang Y., Liu Q., Zhong W., Xia Z. All-trans retinoic acid attenuates airway inflammation by inhibiting Th2 and Th17 response in experimental allergic asthma. BMC Immunol. 2013;14:28. doi: 10.1186/1471-2172-14-28.
    1. Park M.K., Jhun J.Y., Lee S.Y., Oh H.J., Park M.J., Byun J.K., Yoon B.Y., Park E.M., Lee D.G., Kwok S.K., et al. Retinal attenuates inflammatory arthritis by reciprocal regulation of IL-17-producing T cells and Foxp3(+) regulatory T cells and the inhibition of osteoclastogenesis. Immunol. Lett. 2012;148:59–68. doi: 10.1016/j.imlet.2012.05.008.
    1. Chang J., Thangamani S., Kim M.H., Ulrich B., Morris S.M., Jr., Kim C.H. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation. Eur. J. Immunol. 2013;43:967–978. doi: 10.1002/eji.201242772.
    1. Kunisawa J., Hashimoto E., Ishikawa I., Kiyono H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS One. 2012;7:e32094.
    1. Calder P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2012;75:645–662.
    1. Cabre E., Manosa M., Gassull M.A. Omega-3 fatty acids and inflammatory bowel diseases—A systematic review. Br. J. Nutr. 2012;107(Suppl. 2):240–252. doi: 10.1017/S0007114512001626.
    1. Maroufyan E., Kasim A., Ebrahimi M., Loh T.C., Bejo M.H., Zerihun H., Hosseni F., Goh Y.M., Farjam A.S. Omega-3 polyunsaturated fatty acids enrichment alters performance and immune response in infectious bursal disease challenged broilers. Lipids Health Dis. 2012;11:15. doi: 10.1186/1476-511X-11-15.
    1. Wall R., Ross R.P., Fitzgerald G.F., Stanton C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010;68:280–289. doi: 10.1111/j.1753-4887.2010.00287.x.
    1. Sorokovoi K.V., Pogozheva A.V., Sergeeva K.V. Effect of diet including omega-3 polyunsaturated fatty acids on the status of T-cell immunity in patients with ischemic heart disease and hyperproteinemia. Vopr. Pitan. 1997;5:6–8.
    1. Terada S., Takizawa M., Yamamoto S., Ezaki O., Itakura H., Akagawa K.S. Suppressive mechanisms of EPA on human T cell proliferation. Microbiol. Immunol. 2001;45:473–481.
    1. Molvig J., Pociot F., Worsaae H., Wogensen L.D., Baek L., Christensen P., Mandrup-Poulsen T., Andersen K., Madsen P., Dyerberg J., et al. Dietary supplementation with omega-3-polyunsaturated fatty acids decreases mononuclear cell proliferation and interleukin-1 beta content but not monokine secretion in healthy and insulin-dependent diabetic individuals. Scand. J. Immunol. 1991;34:399–410. doi: 10.1111/j.1365-3083.1991.tb01563.x.
    1. Simopoulos A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991;54:438–463.
    1. Curtis C.L., Rees S.G., Little C.B., Flannery C.R., Hughes C.E., Wilson C., Dent C.M., Otterness I.G., Harwood J.L., Caterson B. Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum. 2002;46:1544–1553. doi: 10.1002/art.10305.
    1. Han S.C., Kang G.J., Ko Y.J., Kang H.K., Moon S.W., Ann Y.S., Yoo E.S. Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells. BMC Immunol. 2012;13:44. doi: 10.1186/1471-2172-13-44.
    1. Iwami D., Nonomura K., Shirasugi N., Niimi M. Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int. Immunopharmacol. 2011;11:384–389. doi: 10.1016/j.intimp.2010.11.035.
    1. Kong W., Yen J.H., Ganea D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigen-specific Th1/Th17 differentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav. Immun. 2011;25:872–882. doi: 10.1016/j.bbi.2010.09.012.
    1. Yessoufou A., Ple A., Moutairou K., Hichami A., Khan N.A. Docosahexaenoic acid reduces suppressive and migratory functions of CD4+CD25+ regulatory T-cells. J. Lipid Res. 2009;50:2377–2388. doi: 10.1194/jlr.M900101-JLR200.
    1. Wang H.K., Yeh C.H., Iwamoto T., Satsu H., Shimizu M., Totsuka M. Dietary flavonoid naringenin induces regulatory T cells via an aryl hydrocarbon receptor mediated pathway. J. Agric. Food Chem. 2012;60:2171–2178. doi: 10.1021/jf204625y.
    1. Assini J.M., Mulvihill E.E., Sutherland B.G., Telford D.E., Sawyez C.G., Felder S.L., Chhoker S.S., Edwards J.Y., Gros R., Huff M.W. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation and atherosclerosis in Ldlr-/- mice. J. Lipid Res. 2012;54:711–724.
    1. Shi Y., Dai J., Liu H., Li R.R., Sun P.L., Du Q., Pang L.L., Chen Z., Yin K.S. Naringenin inhibits allergen-induced airway inflammation and airway responsiveness and inhibits NF-kappaB activity in a murine model of asthma. Can. J. Physiol. Pharmacol. 2009;87:729–735. doi: 10.1139/Y09-065.
    1. Wang J., Ren Z., Xu Y., Xiao S., Meydani S.N., Wu D. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets. Am. J. Pathol. 2012;180:221–234. doi: 10.1016/j.ajpath.2011.09.007.
    1. Magrone T., Jirillo E. Influence of polyphenols on allergic immune reactions: Mechanisms of action. Proc. Nutr. Soc. 2012;71:316–321. doi: 10.1017/S0029665112000109.
    1. Issazadeh-Navikas S., Teimer R., Bockermann R. Influence of dietary components on regulatory T cells. Mol. Med. 2012;18:95–110.

Source: PubMed

3
订阅