EGFR-Based Immunoisolation as a Recovery Target for Low-EpCAM CTC Subpopulation

Ana Vila, Miguel Abal, Laura Muinelo-Romay, Carlos Rodriguez-Abreu, José Rivas, Rafael López-López, Clotilde Costa, Ana Vila, Miguel Abal, Laura Muinelo-Romay, Carlos Rodriguez-Abreu, José Rivas, Rafael López-López, Clotilde Costa

Abstract

Circulating tumour cells (CTCs) play a key role in the metastasis process, as they are responsible for micrometastasis and are a valuable tool for monitoring patients in real-time. Moreover, efforts to develop new strategies for CTCs isolation and characterisation, and the translation of CTCs into clinical practice needs to overcome the limitation associated with the sole use of Epithelial Cell Adhesion Molecule (EpCAM) expression to purify this tumour cell subpopulation. CTCs are rare events in the blood of patients and are believed to represent the epithelial population from a primary tumour of epithelial origin, thus EpCAM immunoisolation is considered an appropriate strategy. The controversy stems from the impact that the more aggressive mesenchymal tumour phenotypes might have on the whole CTC population. In this work, we first characterised a panel of cell lines representative of tumour heterogeneity, confirming the existence of tumour cell subpopulations with restricted epithelial features and supporting the limitations of EpCAM-based technologies. We next developed customised polystyrene magnetic beads coated with antibodies to efficiently isolate the phenotypically different subpopulations of CTCs from the peripheral blood mononuclear cells (PBMCs) of patients with metastatic cancer. Besides EpCAM, we propose Epidermal Growth Factor Receptor (EGFR) as an additional isolation marker for efficient CTCs detection.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1
A) SEM image. B) Yield and initial Fe3O4 content versus actual Fe3O4 content (wt%). C) Plot of magnetisation versus applied magnetic field for beads.
Fig 2
Fig 2
A) Df/Di (final diameter/initial diameter) ratio after several washing steps of magnetic beads. B) Df/Di ratio of beads after serial 4 months storage period.
Fig 3. Cell recovery using magnetic beads.
Fig 3. Cell recovery using magnetic beads.
A) Flow cytometry analysis of SW480 cells incubated with anti-EpCAM antibody, beads coated with anti-EpCAM or magnetic beads alone. B) Capture efficiency (%) of SW480 cells with magnetic beads functionalised with anti-EpCAM (40 μg/μL) at different cell numbers. C) Capture efficiency (%) of MDA-MB-231 cells (10000) using anti-EpCAM beads or anti-EGFR beads (40 μg). Isolation was performed sequentially: EpCAM-EGFR or EGFR-EpCAM (1 or 2 indicates first or second isolation step, respectively). D) Capture efficiency (%) of SW480 cells (23.25±5.08) spiked in donor control PBMCs (9 or 18 million) for different amounts of anti-EpCAM beads (24 and 48 μg). Independent isolation assays, n≥3, (duplicates per condition). E) Capture efficiency (%) of SW480 cells (22.81±15.40) spiked in donor control PBMCs using 5.8 μg anti-EpCAM beads per million. Three independent isolation assays (n≥3 replicates per assay).
Fig 4. Viability of captured tumour cells.
Fig 4. Viability of captured tumour cells.
A, A´) Microscopic images of spiked SW480 cells isolated from PBS (A) or healthy donor PBMCs (A´). B) Cell proliferation was measured by Alamar Blue assay after 24 h in culture. Each point represents the mean ± S.E.M. of 6 replicates per group.
Fig 5. CTCs isolated with magnetic beads…
Fig 5. CTCs isolated with magnetic beads from blood from patients with metastatic cancer.
Representative immunofluorescence for Hoechst (blue, for nuclei staining), pan-cytokeratins (green), CD45 (red) and merge of CTC isolated from a patient with metastatic breast cancer (upper panel). Merge for indicated staining of CTCs isolated with anti-EpCAM, anti-EGFR or anti-FGFR magnetic beads. The size of each CTC is indicated in μm.
Fig 6. EGFR-positive CTCs correlates with worse…
Fig 6. EGFR-positive CTCs correlates with worse prognosis.
A) EGFR-positive CTC enumeration from patients with colon, prostate and breast metastatic cancer (from Table 3); (Spearman rank correlation coefficient = 0.575, p<0.05). B) Kaplan–Meier plot of overall survival or progression free survival based on EGFR-positive CTCs isolation.
Fig 7. EGFR isolated CTCs depict differential…
Fig 7. EGFR isolated CTCs depict differential subpopulation.
Gene expression profiling of indicated genes in isolated CTCs from patients with metastatic prostate cancer using coated magnetic beads for the three fractions: EpCAM (inblack); EGFR (in green) and FGFR (in grey); (n = 8). CellSearch data regarding CTC number for each patient is summed in the box. Wilcoxon signed rank test, *p
All figures (7)

References

    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. Epub 2011/03/08. 10.1016/j.cell.2011.02.013 .
    1. Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell. 2013;23(5):573–81. Epub 2013/05/18. 10.1016/j.ccr.2013.04.017
    1. Harouaka R, Kang Z, Zheng SY, Cao L. Circulating tumor cells: advances in isolation and analysis, and challenges for clinical applications. Pharmacol Ther. 2014;141(2):209–21. Epub 2013/10/19. 10.1016/j.pharmthera.2013.10.004
    1. Costa C, Abal M, Lopez-Lopez R, Muinelo-Romay L. Biosensors for the detection of circulating tumour cells. Sensors (Basel). 2014;14(3):4856–75. Epub 2014/03/13. 10.3390/s140304856
    1. Ignatiadis M, Georgoulias V, Mavroudis D. Micrometastatic disease in breast cancer: clinical implications. Eur J Cancer. 2008;44(18):2726–36. Epub 2008/12/06. 10.1016/j.ejca.2008.09.033 .
    1. Lianidou ES, Markou A. Circulating tumor cells as emerging tumor biomarkers in breast cancer. Clin Chem Lab Med. 2011;49(10):1579–90. Epub 2011/08/02. 10.1515/cclm.2011.628 .
    1. Raimondi C, Gradilone A, Naso G, Cortesi E, Gazzaniga P. Clinical utility of circulating tumor cell counting through CellSearch((R)): the dilemma of a concept suspended in Limbo. Onco Targets Ther. 2014;7:619–25. Epub 2014/05/03. 10.2147/OTT.S46200
    1. Gosens MJ, van Kempen LC, van de Velde CJ, van Krieken JH, Nagtegaal ID. Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol. 2007;20(2):221–32. Epub 2007/03/16. 10.1038/modpathol.3800733 .
    1. Yanamoto S, Kawasaki G, Yoshitomi I, Iwamoto T, Hirata K, Mizuno A. Clinicopathologic significance of EpCAM expression in squamous cell carcinoma of the tongue and its possibility as a potential target for tongue cancer gene therapy. Oral Oncol. 2007;43(9):869–77. Epub 2007/01/09. 10.1016/j.oraloncology.2006.10.010 .
    1. Driemel C, Kremling H, Schumacher S, Will D, Wolters J, Lindenlauf N, et al. Context-dependent adaption of EpCAM expression in early systemic esophageal cancer. Oncogene. 2014;33(41):4904–15. Epub 2013/10/22. 10.1038/onc.2013.441 .
    1. Bitting RL, Schaeffer D, Somarelli JA, Garcia-Blanco MA, Armstrong AJ. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev. 2014;33(2–3):441–68. Epub 2014/01/15. 10.1007/s10555-013-9483-z
    1. Barriere G, Fici P, Gallerani G, Fabbri F, Zoli W, Rigaud M. Circulating tumor cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med. 2014;2(11):109 Epub 2014/12/10. 10.3978/j.issn.2305-5839.2014.10.04
    1. Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7(1):1–11. Epub 2014/11/16. 10.15252/emmm.201303698
    1. Muinelo-Romay L, Vieito M, Abalo A, Nocelo MA, Baron F, Anido U, et al. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment. Cancers (Basel). 2014;6(1):153–65. Epub 2014/01/24. 10.3390/cancers6010153
    1. Gazzaniga P, de Berardinis E, Raimondi C, Gradilone A, Busetto GM, De Falco E, et al. Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer. Int J Cancer. 2014;135(8):1978–82. Epub 2014/03/07. 10.1002/ijc.28830 .
    1. Cailleau R, Young R, Olive M, Reeves WJ Jr. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974;53(3):661–74. Epub 1974/09/01. .
    1. Soule HD, Vazguez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973;51(5):1409–16. Epub 1973/11/01. .
    1. Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59(1):221–6. Epub 1977/07/01. .
    1. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51(5):1417–23. Epub 1973/11/01. .
    1. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17(1):16–23. Epub 1979/07/01. .
    1. Gillis S, Watson J. Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an interleukin 2-producing human leukemia T cell line. J Exp Med. 1980;152(6):1709–19. Epub 1980/12/01. 10.1084/jem.152.6.1709
    1. Tomlinson GE, Chen TT, Stastny VA, Virmani AK, Spillman MA, Tonk V, et al. Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res. 1998;58(15):3237–42. Epub 1998/08/12. .
    1. Gazdar AF, Kurvari V, Virmani A, Gollahon L, Sakaguchi M, Westerfield M, et al. Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer. 1998;78(6):766–74. Epub 1998/12/02. 10.1002/(SICI)1097-0215(19981209)78:6<766::AID-IJC15>;2-L [pii]. .
    1. Colas E, Muinelo-Romay L, Alonso-Alconada L, Llaurado M, Monge M, Barbazan J, et al. ETV5 cooperates with LPP as a sensor of extracellular signals and promotes EMT in endometrial carcinomas. Oncogene. 2012;31(45):4778–88. Epub 2012/01/24. 10.1038/onc.2011.632 .
    1. Monge M, Colas E, Doll A, Gonzalez M, Gil-Moreno A, Planaguma J, et al. ERM/ETV5 up-regulation plays a role during myometrial infiltration through matrix metalloproteinase-2 activation in endometrial cancer. Cancer Res. 2007;67(14):6753–9. Epub 2007/07/20. 10.1158/0008-5472.CAN-06-4487 .
    1. Alonso-Alconada L, Muinelo-Romay L, Madissoo K, Diaz-Lopez A, Krakstad C, Trovik J, et al. Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer. Mol Cancer. 2014;13:223 Epub 2014/09/30. 10.1186/1476-4598-13-223
    1. Ramírez LP, Landfester K. Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes. Macromolecular Chemistry and Physics. 2003;204(1):22–31. 10.1002. 10.1002/macp.200290052
    1. Vila A, Martins VC, Chícharo A, Rodríguez-Abreu C, Fernandes AC, Cardoso FA, et al. Customized Desing of Magnetic Beads for Dynamic Magnetoresistive Cytometry. IEEE Transactions on Magnetrics. 2014;50(11):5101904 10.1109/TMAG.2014.2324411
    1. Hewitt RE, McMarlin A, Kleiner D, Wersto R, Martin P, Tsokos M, et al. Validation of a model of colon cancer progression. J Pathol. 2000;192(4):446–54. Epub 2000/12/13. 10.1002/1096-9896(2000)9999:9999<::AID-PATH775>;2-K .
    1. Yin KB. The Mesenchymal-Like Phenotype of the MDA-MB-231 Cell Line. In: Gunduz M, editor. Breast Cancer—Focusing Tumor Microenvironment, Stem cells and Metastasis 2011. p. 386–402. 10.5772/20666
    1. Chen C, Zhao Z, Liu Y, Mu D. microRNA-99a is downregulated and promotes proliferation, migration and invasion in non-small cell lung cancer A549 and H1299 cells. Oncol Lett. 2015;9(3):1128–34. Epub 2015/02/11. 10.3892/ol.2015.2873
    1. Toge M, Yokoyama S, Kato S, Sakurai H, Senda K, Doki Y, et al. Critical contribution of MCL-1 in EMT-associated chemo-resistance in A549 non-small cell lung cancer. Int J Oncol. 2015;46(4):1844–8. Epub 2015/02/04. 10.3892/ijo.2015.2861 .
    1. Coey JMD. Magnetism and magnetic materials New York, NY: Cambridge Univ. Press; 2010.
    1. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer. 2015;15(1):399 Epub 2015/05/13. 10.1186/s12885-015-1386-7 .
    1. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4. Epub 2013/02/02. 10.1126/science.1228522
    1. Martowicz A, Spizzo G, Gastl G, Untergasser G. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines. BMC Cancer. 2012;12:501 Epub 2012/11/01. 10.1186/1471-2407-12-501
    1. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med. 2013;5(180):180ra48 Epub 2013/04/12. 10.1126/scitranslmed.3005109
    1. Gires O, Stoecklein NH. Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. Cell Mol Life Sci. 2014. Epub 2014/08/12. 10.1007/s00018-014-1693-1 .
    1. van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis. 2010;31(11):1913–21. Epub 2010/09/15. 10.1093/carcin/bgq187 .
    1. Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol. 2007;25(5):587–95. Epub 2007/02/10. 10.1200/JCO.2006.07.3585 .
    1. Punnoose EA, Atwal SK, Spoerke JM, Savage H, Pandita A, Yeh RF, et al. Molecular biomarker analyses using circulating tumor cells. PLoS One. 2010;5(9):e12517 Epub 2010/09/15. 10.1371/journal.pone.0012517
    1. Barr S, Thomson S, Buck E, Russo S, Petti F, Sujka-Kwok I, et al. Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin Exp Metastasis. 2008;25(6):685–93. Epub 2008/02/01. 10.1007/s10585-007-9121-7
    1. Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010;277(2):301–8. Epub 2009/11/20. 10.1111/j.1742-4658.2009.07448.x .
    1. Serrano MJ, Ortega FG, Alvarez-Cubero MJ, Nadal R, Sanchez-Rovira P, Salido M, et al. EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget. 2014;5(17):7486–97. Epub 2014/10/04. 10.18632/oncotarget.2217
    1. Mikolajczyk SD, Millar LS, Tsinberg P, Coutts SM, Zomorrodi M, Pham T, et al. Detection of EpCAM-Negative and Cytokeratin-Negative Circulating Tumor Cells in Peripheral Blood. J Oncol. 2011;2011:252361 Epub 2011/05/18. 10.1155/2011/252361
    1. Woelfle U, Sauter G, Santjer S, Brakenhoff R, Pantel K. Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clin Cancer Res. 2004;10(8):2670–4. Epub 2004/04/23. 10.1158/1078-0432.CCR-03-0114 .
    1. Lustberg MB, Balasubramanian P, Miller B, Garcia-Villa A, Deighan C, Wu Y, et al. Heterogeneous atypical cell populations are present in blood of metastatic breast cancer patients. Breast Cancer Res. 2014;16(2):R23 Epub 2014/03/08. 10.1186/bcr3622
    1. Feng S, Zhou L, Nice EC, Huang C. Fibroblast growth factor receptors: multifactorial-contributors to tumor initiation and progression. Histol Histopathol. 2015;30(1):13–31. Epub 2014/07/24. .
    1. Fons P, Gueguen-Dorbes G, Herault JP, Geronimi F, Tuyaret J, Frederique D, et al. Tumor vasculature is regulated by FGF/FGFR signaling-mediated angiogenesis and bone marrow-derived cell recruitment: this mechanism is inhibited by SSR128129E, the first allosteric antagonist of FGFRs. J Cell Physiol. 2015;230(1):43–51. Epub 2014/04/25. 10.1002/jcp.24656 .
    1. Cheng T, Roth B, Choi W, Black PC, Dinney C, McConkey DJ. Fibroblast growth factor receptors-1 and -3 play distinct roles in the regulation of bladder cancer growth and metastasis: implications for therapeutic targeting. PLoS One. 2013;8(2):e57284 Epub 2013/03/08. 10.1371/journal.pone.0057284
    1. Terry S, El-Sayed IY, Destouches D, Maille P, Nicolaiew N, Ploussard G, et al. CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities. Oncotarget. 2015;6(14):11994–2008. Epub 2015/01/19. 10.18632/oncotarget.2740
    1. Bedussi F, Bottini A, Memo M, Fox SB, Sigala S, Generali D. Targeting fibroblast growth factor receptor in breast cancer: a promise or a pitfall? Expert Opin Ther Targets. 2014;18(6):665–78. Epub 2014/05/17. 10.1517/14728222.2014.898064 .
    1. Carnio S, Novello S, Bironzo P, Scagliotti GV. Moving from histological subtyping to molecular characterization: new treatment opportunities in advanced non-small-cell lung cancer. Expert Rev Anticancer Ther. 2014;14(12):1495–513. Epub 2014/09/04. 10.1586/14737140.2014.949245 .
    1. Ranieri D, Belleudi F, Magenta A, Torrisi MR. HPV16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial-mesenchymal transition. Int J Cancer. 2015;137(1):61–72. Epub 2014/12/03. 10.1002/ijc.29373 .
    1. Zhu DY, Guo QS, Li YL, Cui B, Guo J, Liu JX, et al. Twist1 correlates with poor differentiation and progression in gastric adenocarcinoma via elevation of FGFR2 expression. World J Gastroenterol. 2014;20(48):18306–15. Epub 2015/01/07. 10.3748/wjg.v20.i48.18306
    1. Curtis C. Genomic profiling of breast cancers. Curr Opin Obstet Gynecol. 2015;27(1):34–9. Epub 2014/12/17. 10.1097/gco.0000000000000145 .
    1. Fernandez SV, Bingham C, Fittipaldi P, Austin L, Palazzo J, Palmer G, et al. TP53 mutations detected in circulating tumor cells present in the blood of metastatic triple negative breast cancer patients. Breast Cancer Res. 2014;16(5):445 Epub 2014/10/14. 10.1186/s13058-014-0445-3
    1. Pestrin M, Salvianti F, Galardi F, De Luca F, Turner N, Malorni L, et al. Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients. Mol Oncol. 2015;9(4):749–57. Epub 2014/12/30. 10.1016/j.molonc.2014.12.001 .
    1. Barbazan J, Alonso-Alconada L, Muinelo-Romay L, Vieito M, Abalo A, Alonso-Nocelo M, et al. Molecular characterization of circulating tumor cells in human metastatic colorectal cancer. PLoS One. 2012;7(7):e40476 Epub 2012/07/20. 10.1371/journal.pone.0040476

Source: PubMed

3
订阅