Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/lipopolysaccharide induced hepatotoxicity in animal model

Mohammad Raish, Ajaz Ahmad, Khalid M Alkharfy, Syed Rizwan Ahamad, Kazi Mohsin, Fahad I Al-Jenoobi, Abdullah M Al-Mohizea, Mushtaq Ahmad Ansari, Mohammad Raish, Ajaz Ahmad, Khalid M Alkharfy, Syed Rizwan Ahamad, Kazi Mohsin, Fahad I Al-Jenoobi, Abdullah M Al-Mohizea, Mushtaq Ahmad Ansari

Abstract

Background: Fulminant hepatic failure (FHF) is clinical syndrome with very poor prognosis and high mortality there is urgent need for the development of safe and non-toxic hepatoprotective agents for the adequate management of hepatitis. Hepatoprotective effect of the Lepidium sativum ethanolic extract (LSEE) was assessed by D-galactosamine-induced/lipopolysaccharide (400 mg/kg and 30 μg/kg) liver damage model in rats.

Methods: Hepatoprotective activity of LSEE (150 and 300 mg/kg) and silymarin on D-GalN/LPS induced FHF in rat was assessed using several liver function enzyme parameters. Antioxidant properties as antioxidant stress enzymes were assessed in hepatic Liver as well as mRNA expression of cytokines genes such as TNF-α, IL-6, and IL-10 and stress related genes iNOS and HO-1 were determined by RT-PCR. Protein expression of apoptotic genes were evaluated through western blot. MPO and NF-κB DNA-binding activity was analyzed by ELISA. The magnitude of hepatic impairment was investigated through histopathological evaluation.

Results: Marked amelioration of hepatic injuries by attenuation of serum and lipid peroxidation has been observed as comparable with silymarin (25 mg/kg p.o). D-GalN/LPS induced significant decrease in oxidative stress markers protein level, and albumin. LSEE significantly down-regulated the D-GalN/LPS induced pro-inflammatory cytokines TNFα and IL-6 mRNA expression in dose dependent fashion about 0.47 and 0.26 fold and up-regulates the IL-10 by 1.9 and 2.8 fold, respectively. While encourages hepatoprotective activity by down-regulating mRNA expression of iNOS and HO-1. MPO activity and NF-κB DNA-binding effect significantly increased and was mitigated by LSEE in a dose-dependent style as paralleled with silymarin.

Conclusion: Our data suggests that pretreatment of LSEE down regulates the caspase 3 and up-regulates the BCl2 protein expression. The above findings revealed that Lepidium sativum has significant hepatoprotective activity.

Keywords: Cytokines; D-galactosamine/lipopolysaccharide; Hepatotoxicity; Lepidium sativum.

Figures

Fig. 1
Fig. 1
Effect of Lepidium sativum extract on mRNA expression of cytokines genes such tumor necrotic factor-α (TNFα), Interluekine 6 (IL-6), and Interluekine 10 (IL-10). All values represent mean ± SEM. *p < 0.05; ANOVA, followed by Dunnett’s multiple comparision test. *compared to GalN/LPS only group
Fig. 2
Fig. 2
Effect of Lepidium sativum extract on mRNA expression of cytokines genes such nitrous oxide synthase (iNOS) and Haemoxygensae1 (HO-1). All values represent mean ± SEM. *p < 0.05; ANOVA, followed by Dunnett’s multiple comparision test. * compared to GalN/LPS only group
Fig. 3
Fig. 3
Effect of LSEE on D-GalN/LPS-induced changes in inflammatory and apoptotic markers in Liver tissues of rats. a Myeloperoxidase (MPO) (b) Nuclear NF-κB (p65) DNA-binding activity determined by using NF-κB (p65) transcription factor ELISA assay kit. c Immunoblot analysis of apoptotic marker cleaved caspase-3 and antiapoptotic marker Bcl-2 protein in comparison with β-actin expression was used as a loading control. All values represent mean ± SEM. *p < 0.05; ANOVA, followed by Dunnett’s multiple comparision test. * compared to GalN/LPS only group
Fig. 4
Fig. 4
Histopathology of liver tissues. a Liver section of normal control rat shows central vein surrounded by hepatic cord of cells (normal architecture), b liver section of D-GalN/LPS treated rats showing massive fatty changes, focal central vein congestion, ballooning formation, necrosis with inflammation and loss of cellular boundaries, c liver section of rats treated D-GalN/LPS and 150 mg/kg of LSEE showing mild central vein congestion (indicated by arrow), ballooning, necrosis with sinusoidal dilatation, d liver section of rats treated D-GalN/LPS and 300 mg/kg of LSEE showing absence of ballooning, inflammatory cells and regeneration of hepatocytes around central vein toward near normal liver architecture but slight congestion in central vein (indicated by arrow), e liver section of rats treated D-GalN/LPS and 10 mg/kg of silymarin showing normal liver architecture

References

    1. Nakama T, Hirono S, Moriuchi A, Hasuike S, Nagata K, Hori T, Ido A, Hayashi K, Tsubouchi H. Etoposide prevents apoptosis in mouse liver with D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure resulting in reduction of lethality. Hepatology. 2001;33(6):1441–50. doi: 10.1053/jhep.2001.24561.
    1. Kim SH, Kim YS, Kang SS, Bae K, Hung TM, Lee SM. Anti-apoptotic and hepatoprotective effects of gomisin A on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J Pharmacol Sci. 2008;106(2):225–33. doi: 10.1254/jphs.FP0071738.
    1. Muriel P, Rivera-Espinoza Y. Beneficial drugs for liver diseases. J Appl Toxicol. 2008;28(2):93–103. doi: 10.1002/jat.1310.
    1. Bruck R, Aeed H, Shirin H, Matas Z, Zaidel L, Avni Y, Halpern Z. The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. J Hepatol. 1999;31(1):27–38. doi: 10.1016/S0168-8278(99)80160-3.
    1. Emerit I, Huang CY, Serejo F, Filipe P, Fernandes A, Costa A, Freitas J, Baptista A, Carneiro de Moura M. Oxidative stress in chronic hepatitis C: a preliminary study on the protective effects of antioxidant flavonoids. Hepatogastroenterology. 2005;52(62):530–6.
    1. Kmiec Z, Smolenski RT, Zych M, Mysliwski A. The effects of galactosamine on UTP levels in the livers of young, adult and old rats. Acta Biochim Pol. 2000;47(2):349–53.
    1. Decker K, Keppler D. Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev Physiol Biochem Pharmacol. 1974;71:77–106.
    1. Nagakawa J, Hirota K, Hishinuma I, Miyamoto K, Sonoda J, Yamanaka T, Katayama K, Yamatsu I. Protective effect of E3330, a novel quinone derivative, in galactosamine-induced hepatitis in rats. J Pharmacol Exp Ther. 1993;264(1):496–500.
    1. Hoffmann-Bohm K, Lotter H, Seligmann O, Wagner H. Antihepatotoxic C-glycosylflavones from the leaves of Allophyllus edulis var. edulis and gracilis. Planta Med. 1992;58(6):544–8. doi: 10.1055/s-2006-961546.
    1. Liu P, Ohnishi H, Moriwaki H, Muto Y. Enhanced tumor necrosis factor and interleukin-1 in an experimental model of massive liver cell necrosis/fatal hepatitis in mice. Gastroenterol Jpn. 1990;25(3):339–42. doi: 10.1007/BF02779448.
    1. Liu LM, Zhang JX, Luo J, Guo HX, Deng H, Chen JY, Sun SL. A role of cell apoptosis in lipopolysaccharide (LPS)-induced nonlethal liver injury in D-galactosamine (D-GalN)-sensitized rats. Dig Dis Sci. 2008;53(5):1316–24. doi: 10.1007/s10620-007-9994-y.
    1. Diesen DL, Kuo PC. Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis. J Surg Res. 2010;162(1):95–109. doi: 10.1016/j.jss.2009.09.019.
    1. Farombi EO, Surh YJ. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J Biochem Mol Biol. 2006;39(5):479–91.
    1. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009;11(11):2685–700. doi: 10.1089/ars.2009.2695.
    1. Takemura S, Minamiyama Y, Imaoka S, Funae Y, Hirohashi K, Inoue M, Kinoshita H. Hepatic cytochrome P450 is directly inactivated by nitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia. J Hepatol. 1999;30(6):1035–44. doi: 10.1016/S0168-8278(99)80257-8.
    1. Schwabe RF, Brenner DA. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol. 2006;290(4):G583–9. doi: 10.1152/ajpgi.00422.2005.
    1. Camussi G, Albano E, Tetta C, Bussolino F. The molecular action of tumor necrosis factor-alpha. Eur J Biochem. 1991;202(1):3–14. doi: 10.1111/j.1432-1033.1991.tb16337.x.
    1. Mukazayire MJ, Minani V, Ruffo CK, Bizuru E, Stevigny C, Duez P. Traditional phytotherapy remedies used in Southern Rwanda for the treatment of liver diseases. J Ethnopharmacol. 2011;138(2):415–31. doi: 10.1016/j.jep.2011.09.025.
    1. Bigoniya P, Shukla A. Phytopharmacological screening of Lepidium sativum seeds total alkaloid: Hepatoprotective, antidiabetic and in vitro antioxidant activity along with identification by LC/MS/MS. PharmaNutrition. 2014;2(3):90. doi: 10.1016/j.phanu.2013.11.043.
    1. Sakran M, Selim Y, Zidan N. A new isoflavonoid from seeds of Lepidium sativum L. and its protective effect on hepatotoxicity induced by paracetamol in male rats. Molecules. 2014;19(10):15440–51. doi: 10.3390/molecules191015440.
    1. Del Valle Mendoza J, Pumarola T, Gonzales LA, Del Valle LJ. Antiviral activity of maca (Lepidium meyenii) against human influenza virus. Asian Pac J Trop Med. 2014;7S1:S415–20. doi: 10.1016/S1995-7645(14)60268-6.
    1. Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2) Pharm Biol. 2016;54(2):314–21. doi: 10.3109/13880209.2015.1035795.
    1. Vo QV, Trenerry C, Rochfort S, Wadeson J, Leyton C, Hughes AB. Synthesis and anti-inflammatory activity of aromatic glucosinolates. Bioorg Med Chem. 2013;21(19):5945–54. doi: 10.1016/j.bmc.2013.07.049.
    1. Afaf I, Abuelgasim H, Nuha S, Mohammed AH. Hepatoprotective effect of Lepidium sativumagainst carbon tetrachloride induced damage in rats. Res J Anim Vet Sci. 2008;3:20–3.
    1. Yogesh Chand Y, Srivastav DN, Seth VS AK, Balaraman R, Ghelan TK. In vivo antioxidant potential of lepidium sativum l. Seeds in albino rats using cisplatin induced nephrotoxicity. Int J Phytomedicine. 2010;2:292–8.
    1. Raval ND, Ravishankar B. Analgesic effect of Lepidium sativum Linn. (Chandrashura) in experimental animals. Ayu. 2010;31(3):371–3. doi: 10.4103/0974-8520.77163.
    1. Ahmad A, Raish M, Ganaie MA, Ahmad SR, Mohsin K, Al-Jenoobi FI, Al-Mohizea AM, Alkharfy KM. Hepatoprotective effect of Commiphora myrrha against d-GalN/LPS-induced hepatic injury in a rat model through attenuation of pro inflammatory cytokines and related genes. Pharm Biol. 2015;53(12):1759–67. doi: 10.3109/13880209.2015.1005754.
    1. OECD (testing gudideline, 401) 1981. Guidelines for the testing of chemicals. OECD 401. Acute oral toxicity. Paris: Organisation for Economic Cooperation and Development. In; 1981.
    1. Wang JB, Wang HT, Li LP, Yan YC, Wang W, Liu JY, Zhao YT, Gao WS, Zhang MX. Development of a rat model of D-galactosamine/lipopolysaccharide induced hepatorenal syndrome. World J Gastroenterol. 2015;21(34):9927–35. doi: 10.3748/wjg.v21.i34.9927.
    1. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56–63. doi: 10.1093/ajcp/28.1.56.
    1. Bradley DW, Maynard JE, Emery G, Webster H. Transaminase activities in serum of long-term hemodialysis patients. Clin Chem. 1972;18(11):1442.
    1. Persijn JP, van der Slik W. A new method for the determination of gamma-glutamyltransferase in serum. J Clin Chem Clin Biochem. 1976;14(9):421–7.
    1. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.
    1. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–69. doi: 10.1159/000136485.
    1. Peskin AV, Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1) Clin Chim Acta. 2000;293(1–2):157–66. doi: 10.1016/S0009-8981(99)00246-6.
    1. Aebi H. Catalase. Cheime: Academic; 1974.
    1. van Dielen FM, Buurman WA, Hadfoune M, Nijhuis J, Greve JW. Macrophage inhibitory factor, plasminogen activator inhibitor-1, other acute phase proteins, and inflammatory mediators normalize as a result of weight loss in morbidly obese subjects treated with gastric restrictive surgery. J Clin Endocrinol Metab. 2004;89(8):4062–8. doi: 10.1210/jc.2003-032125.
    1. Sreejayan N, Rao MN. Free radical scavenging activity of curcuminoids. Arzneimittelforschung. 1996;46(2):169–71.
    1. Chaung SS, Lin CC, Lin J, Yu KH, Hsu YF, Yen MH. The hepatoprotective effects of Limonium sinense against carbon tetrachloride and beta-D-galactosamine intoxication in rats. Phytother Res. 2003;17(7):784–91. doi: 10.1002/ptr.1236.
    1. Nakagiri R, Hashizume E, Kayahashi S, Sakai Y, Kamiya T. Suppression by Hydrangeae Dulcis Folium of D-galactosamine-induced liver injury in vitro and in vivo. Biosci Biotechnol Biochem. 2003;67(12):2641–3. doi: 10.1271/bbb.67.2641.
    1. Tang XH, Gao L, Gao J, Fan YM, Xu LZ, Zhao XN, Xu Q. Mechanisms of hepatoprotection of Terminalia catappa L. extract on D-Galactosamine-induced liver damage. Am J Chin Med. 2004;32(4):509–19. doi: 10.1142/S0192415X04002156.
    1. Endo Y, Shibazaki M, Yamaguchi K, Kai K, Sugawara S, Takada H, Kikuchi H, Kumagai K. Enhancement by galactosamine of lipopolysaccharide(LPS)-induced tumour necrosis factor production and lethality: its suppression by LPS pretreatment. Br J Pharmacol. 1999;128(1):5–12. doi: 10.1038/sj.bjp.0702747.
    1. Zhou Y, Park CM, Cho CW, Song YS. Protective effect of pinitol against D-galactosamine-induced hepatotoxicity in rats fed on a high-fat diet. Biosci Biotechnol Biochem. 2008;72(7):1657–66. doi: 10.1271/bbb.70473.
    1. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390(3):191–214. doi: 10.1515/BC.2009.033.
    1. Yuan L, Kaplowitz N. Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med. 2009;30(1–2):29–41. doi: 10.1016/j.mam.2008.08.003.
    1. Geronikaki AA, Gavalas AM. Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen. 2006;9(6):425–42. doi: 10.2174/138620706777698481.
    1. Mignon A, Rouquet N, Fabre M, Martin S, Pages JC, Dhainaut JF, Kahn A, Briand P, Joulin V. LPS challenge in D-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis, not for septic shock. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1308–15. doi: 10.1164/ajrccm.159.4.9712012.
    1. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol. 2009;41(3):251–60. doi: 10.1165/rcmb.2009-0170TR.
    1. Lekic N, Canova NK, Horinek A, Farghali H. The involvement of heme oxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Fitoterapia. 2013;87:20–6. doi: 10.1016/j.fitote.2013.03.016.
    1. Chakravortty D, Kato Y, Sugiyama T, Koide N, Mu MM, Yoshida T, Yokochi T. Inhibition of caspase 3 abrogates lipopolysaccharide-induced nitric oxide production by preventing activation of NF-kappaB and c-Jun NH2-terminal kinase/stress-activated protein kinase in RAW 264.7 murine macrophage cells. Infect Immun. 2001;69(3):1315–21. doi: 10.1128/IAI.69.3.1315-1321.2001.
    1. Wagner AE, Boesch-Saadatmandi C, Dose J, Schultheiss G, Rimbach G. Anti-inflammatory potential of allyl-isothiocyanate--role of Nrf2, NF-(kappa) B and microRNA-155. J Cell Mol Med. 2012;16(4):836–43. doi: 10.1111/j.1582-4934.2011.01367.x.
    1. Diwakar BT, Lokesh BR, Naidu KA. Modulatory effect of alpha-linolenic acid-rich garden cress (Lepidium sativum L.) seed oil on inflammatory mediators in adult albino rats. Br J Nutr. 2011;106(4):530–9. doi: 10.1017/S0007114511000663.
    1. Farghali H, Cerny D, Kamenikova L, Martinek J, Horinek A, Kmonickova E, Zidek Z. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide. 2009;21(3–4):216–25. doi: 10.1016/j.niox.2009.09.004.
    1. Ohira H, Abe K, Yokokawa J, Takiguchi J, Rai T, Shishido S, Sato Y. Adhesion molecules and CXC chemokines in endotoxin-induced liver injury. Fukushima J Med Sci. 2003;49(1):1–13. doi: 10.5387/fms.49.1.
    1. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309–12. doi: 10.1126/science.281.5381.1309.
    1. Zhang S, Yang N, Ni S, Li W, Xu L, Dong P, Lu M. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway. Int J Clin Exp Pathol. 2014;7(10):6626–34.
    1. Xiong Q, Hase K, Tezuka Y, Namba T, Kadota S. Acteoside inhibits apoptosis in D-galactosamine and lipopolysaccharide-induced liver injury. Life Sci. 1999;65(4):421–30. doi: 10.1016/S0024-3205(99)00263-5.
    1. Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem. 1997;272(11):7445–54. doi: 10.1074/jbc.272.11.7445.
    1. Prestera T, Talalay P, Alam J, Ahn YI, Lee PJ, Choi AM. Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE) Mol Med. 1995;1(7):827–37.
    1. Park KR, Nam D, Yun HM, Lee SG, Jang HJ, Sethi G, Cho SK, Ahn KS. beta-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett. 2011;312(2):178–88. doi: 10.1016/j.canlet.2011.08.001.
    1. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80(3):434–9. doi: 10.1111/j.1747-0285.2012.01418.x.
    1. Wu SJ, Lu TM, Lai MN, Ng LT. Immunomodulatory activities of medicinal mushroom Grifola frondosa extract and its bioactive constituent. Am J Chin Med. 2013;41(1):131–44. doi: 10.1142/S0192415X13500109.

Source: PubMed

3
订阅