Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases?

Xin Du, Terence Y Pang, Xin Du, Terence Y Pang

Abstract

There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.

Keywords: Alzheimer’s disease; BDNFVal66Met; HPA-axis; Huntington’s disease; Parkinsonian disorders; cortisol; depression; dexamethasone.

Figures

Figure 1
Figure 1
Broad schematic of gene × environmental interactions potentially causative of the greater incidence of co-morbid depression in AD, PD, and HD.

References

    1. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet (1997) 349:1436–42.10.1016/S0140-6736(96)07495-8
    1. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med (2013) 10:e1001547.10.1371/journal.pmed.1001547
    1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet (2013) 382:1575–86.10.1016/S0140-6736(13)61611-6
    1. Moffitt TE, Caspi A, Taylor A, Kokaua J, Milne BJ, Polanczyk G, et al. How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychol Med (2010) 40:899–909.10.1017/S0033291709991036
    1. Michaud CM, Mckenna MT, Begg S, Tomijima N, Majmudar M, Bulzacchelli MT, et al. The burden of disease and injury in the United States 1996. Popul Health Metr (2006) 4:11.10.1186/1478-7954-4-11
    1. Charlson FJ, Moran AE, Freedman G, Norman RE, Stapelberg NJ, Baxter AJ, et al. The contribution of major depression to the global burden of ischemic heart disease: a comparative risk assessment. BMC Med (2013) 11:250.10.1186/1741-7015-11-250
    1. Ferrari AJ, Somerville AJ, Baxter AJ, Norman R, Patten SB, Vos T, et al. Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med (2013) 43:471–8110.1017/S0033291712001511
    1. Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Degenhardt L, Whiteford HA. The global burden of mental and substance use disorders: changes in estimating burden between GBD1990 and GBD2010. Epidemiol Psychiatr Sci (2014) 23:239–49.10.1017/S2045796014000237
    1. Ferrari AJ, Norman RE, Freedman G, Baxter AJ, Pirkis JE, Harris MG, et al. The burden attributable to mental and substance use disorders as risk factors for suicide: findings from the global burden of disease study 2010. PLoS One (2014) 9:e91936.10.1371/journal.pone.0091936
    1. Bostwick JM, Pankratz VS. Affective disorders and suicide risk: a reexamination. Am J Psychiatry (2000) 157:1925–32.10.1176/appi.ajp.157.12.1925
    1. Soloff PH, Lynch KG, Kelly TM, Malone KM, Mann JJ. Characteristics of suicide attempts of patients with major depressive episode and borderline personality disorder: a comparative study. Am J Psychiatry (2000) 157:601–8.10.1176/appi.ajp.157.4.601
    1. Pagura J, Fotti S, Katz LY, Sareen J. Help seeking and perceived need for mental health care among individuals in Canada with suicidal behaviors. Psychiatr Serv (2009) 60:943–9.10.1176/appi.ps.60.7.943
    1. Bradvik L, Berglund M. Depressive episodes with suicide attempts in severe depression: suicides and controls differ only in the later episodes of unipolar depression. Arch Suicide Res (2010) 14:363–7.10.1080/13811118.2010.524068
    1. Parra Uribe I, Blasco-Fontecilla H, Garcia-Pares G, Giro Batalla M, Llorens Capdevila M, Cebria Meca A, et al. Attempted and completed suicide: not what we expected? J Affect Disord (2013) 150:840–6.10.1016/j.jad.2013.03.013
    1. Lopez-Morinigo JD, Fernandes AC, Chang CK, Hayes RD, Broadbent M, Stewart R, et al. Suicide completion in secondary mental healthcare: a comparison study between schizophrenia spectrum disorders and all other diagnoses. BMC Psychiatry (2014) 14:213.10.1186/s12888-014-0213-z
    1. Duman RS, Malberg J, Nakagawa S, D‘sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry (2000) 48:732–9.10.1016/S0006-3223(00)00935-5
    1. Duman RS. Structural alterations in depression: cellular mechanisms underlying pathology and treatment of mood disorders. CNS Spectr (2002) 7(140–142):144–7.10.1017/S1092852900017454
    1. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray NA, et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry (2003) 53:707–42.10.1016/S0006-3223(03)00117-3
    1. Buckley PF, Miller BJ, Lehrer DS, Castle DJ. Psychiatric comorbidities and schizophrenia. Schizophr Bull (2009) 35:383–402.10.1093/schbul/sbn135
    1. Starkstein SE, Mizrahi R. Depression in Alzheimer’s disease. Expert Rev Neurother (2006) 6:887–9510.1586/14737175.6.6.887
    1. Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E, et al. Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry (1999) 67:492–6.10.1136/jnnp.67.4.492
    1. Jacob EL, Gatto NM, Thompson A, Bordelon Y, Ritz B. Occurrence of depression and anxiety prior to Parkinson’s disease. Parkinsonism Relat Disord (2010) 16:576–81.10.1016/j.parkreldis.2010.06.014
    1. Shiwach R. Psychopathology in Huntington’s disease patients. Acta Psychiatr Scand (1994) 90:241–610.1111/j.1600-0447.1994.tb01587.x
    1. Shiwach RS, Norbury CG. A controlled psychiatric study of individuals at risk for Huntington’s disease. Br J Psychiatry (1994) 165:500–5.10.1192/bjp.165.4.500
    1. Gargiulo M, Lejeune S, Tanguy ML, Lahlou-Laforet K, Faudet A, Cohen D, et al. Long-term outcome of presymptomatic testing in Huntington disease. Eur J Hum Genet (2009) 17:165–7110.1038/ejhg.2008.146
    1. Mendenhall E, Norris SA, Shidhaye R, Prabhakaran D. Depression and type 2 diabetes in low- and middle-income countries: a systematic review. Diabetes Res Clin Pract (2014) 103:276–85.10.1016/j.diabres.2014.01.001
    1. Mendenhall E, Weaver LJ. Reorienting women’s health in low- and middle-income countries: the case of depression and Type 2 diabetes. Glob Health Action (2014) 7:22803.10.3402/gha.v7.22803
    1. Halaris A. Inflammation, heart disease, and depression. Curr Psychiatry Rep (2013) 15:400.10.1007/s11920-013-0400-5
    1. McKeon A, Frye MA, Delanty N. The alcohol withdrawal syndrome. J Neurol Neurosurg Psychiatry (2008) 79:854–6210.1136/jnnp.2007.128322
    1. Pelle AJ, Pedersen SS, Schiffer AA, Szabo B, Widdershoven JW, Denollet J. Psychological distress and mortality in systolic heart failure. Circ Heart Fail (2010) 3:261–7.10.1161/CIRCHEARTFAILURE.109.871483
    1. Gnanasekaran G. Epidemiology of depression in heart failure. Heart Fail Clin (2011) 7:1–1010.1016/j.hfc.2010.08.002
    1. Mehta LS. Cardiovascular disease and depression in women. Heart Fail Clin (2011) 7:39–4510.1016/j.hfc.2010.08.005
    1. Denver RJ. Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann N Y Acad Sci (2009) 1163:1–16.10.1111/j.1749-6632.2009.04433.x
    1. Papadimitriou A, Priftis KN. Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation (2009) 16:265–71.10.1159/000216184
    1. Gupta D, Morley JE. Hypothalamic-pituitary-adrenal (HPA) axis and aging. Compr Physiol (2014) 4:1495–510.10.1002/cphy.c130049
    1. Lok A, Mocking RJ, Ruhe HG, Visser I, Koeter MW, Assies J, et al. Longitudinal hypothalamic-pituitary-adrenal axis trait and state effects in recurrent depression. Psychoneuroendocrinology (2012) 37:892–902.10.1016/j.psyneuen.2011.10.005
    1. Vythilingam M, Vermetten E, Anderson GM, Luckenbaugh D, Anderson ER, Snow J, et al. Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. Biol Psychiatry (2004) 56:101–12.10.1016/j.biopsych.2004.04.002
    1. Lerner AJ, Elston RC, Chen CH, Friedland RP. Response of the hypothalamic-pituitary-adrenal axis to lumbar puncture induced stress. J Alzheimers Dis (2000) 2:193–8.
    1. Seifried C, Boehncke S, Heinzmann J, Baudrexel S, Weise L, Gasser T, et al. Diurnal variation of hypothalamic function and chronic subthalamic nucleus stimulation in Parkinson’s disease. Neuroendocrinology (2013) 97:283–90.10.1159/000343808
    1. Aziz NA, Pijl H, Frolich M, Van Der Graaf AW, Roelfsema F, Roos RA. Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab (2009) 94:1223–8.10.1210/jc.2008-2543
    1. Sloviter RS, Sollas AL, Dean E, Neubort S. Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death. J Comp Neurol (1993) 330:324–36.10.1002/cne.903300304
    1. Sloviter RS, Sollas AL, Neubort S. Hippocampal dentate granule cell degeneration after adrenalectomy in the rat is not reversed by dexamethasone. Brain Res (1995) 682:227–30.10.1016/0006-8993(95)00350-Y
    1. Sousa N, Paula-Barbosa MM, Almeida OF. Ligand and subfield specificity of corticoid-induced neuronal loss in the rat hippocampal formation. Neuroscience (1999) 89:1079–87.10.1016/S0306-4522(98)00311-X
    1. Gass P, Kretz O, Wolfer DP, Berger S, Tronche F, Reichardt HM, et al. Genetic disruption of mineralocorticoid receptor leads to impaired neurogenesis and granule cell degeneration in the hippocampus of adult mice. EMBO Rep (2000) 1:447–51.10.1093/embo-reports/kvd088
    1. Gomez-Sanchez EP. Mineralocorticoid receptors in the brain and cardiovascular regulation: minority rule? Trends Endocrinol Metab (2011) 22:179–87.10.1016/j.tem.2011.02.001
    1. Gomez-Sanchez EP, Gomez-Sanchez CE. Central regulation of blood pressure by the mineralocorticoid receptor. Mol Cell Endocrinol (2012) 350:289–98.10.1016/j.mce.2011.05.005
    1. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci (2005) 6:463–75.10.1038/nrn1683
    1. Joels M, Vreugdenhil E. Corticosteroids in the brain. Cellular and molecular actions. Mol Neurobiol (1998) 17:87–10810.1007/BF02802026
    1. Furay AR, Bruestle AE, Herman JP. The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology (2008) 149:5482–90.10.1210/en.2008-0642
    1. De Kloet ER, Derijk R. Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: genetic and kinetic factors affecting the MR/GR balance. Ann N Y Acad Sci (2004) 1032:14–34.10.1196/annals.1314.003
    1. Karssen AM, Meijer OC, Berry A, Sanjuan Pinol R, De Kloet ER. Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinology (2005) 146:5587–95.10.1210/en.2005-0501
    1. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology (2000) 23:477–50110.1016/S0893-133X(00)00159-7
    1. Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord (2001) 62:77–91.10.1016/S0165-0327(00)00352-9
    1. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry (2006) 59:681–8.10.1016/j.biopsych.2006.02.007
    1. Gil-Bea FJ, Aisa B, Solomon A, Solas M, Del Carmen Mugueta M, Winblad B, et al. HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis (2010) 22:829–38.10.3233/JAD-2010-100663
    1. Ros-Bernal F, Hunot S, Herrero MT, Parnadeau S, Corvol JC, Lu L, et al. Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci U S A (2011) 108:6632–7.10.1073/pnas.1017820108
    1. Carroll BJ. Use of the dexamethasone suppression test in depression. J Clin Psychiatry (1982) 43:44–50.
    1. Cohen SI. Cushing’s syndrome: a psychiatric study of 29 patients. Br J Psychiatry (1980) 136:120–410.1192/bjp.136.2.120
    1. Loosen PT, Chambliss B, Debold CR, Shelton R, Orth DN. Psychiatric phenomenology in Cushing’s disease. Pharmacopsychiatry (1992) 25:192–810.1055/s-2007-1014405
    1. Dorn LD, Burgess ES, Dubbert B, Simpson SE, Friedman T, Kling M, et al. Psychopathology in patients with endogenous Cushing’s syndrome: ‘atypical’ or melancholic features. Clin Endocrinol (Oxf) (1995) 43:433–42.10.1111/j.1365-2265.1995.tb02614.x
    1. Dorn LD, Burgess ES, Friedman TC, Dubbert B, Gold PW, Chrousos GP. The longitudinal course of psychopathology in Cushing’s syndrome after correction of hypercortisolism. J Clin Endocrinol Metab (1997) 82:912–9.10.1210/jc.82.3.912
    1. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry (1999) 46:1595–602.10.1016/S0006-3223(99)00203-6
    1. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci (2008) 31:464–8.10.1016/j.tins.2008.06.006
    1. Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med (2011) 73:114–26.10.1097/PSY.0b013e31820ad12b
    1. Ribeiro SC, Tandon R, Grunhaus L, Greden JF. The DST as a predictor of outcome in depression: a meta-analysis. Am J Psychiatry (1993) 150:1618–29.10.1176/ajp.150.11.1618
    1. Lopez-Duran NL, Kovacs M, George CJ. Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: a meta-analysis. Psychoneuroendocrinology (2009) 34:1272–83.10.1016/j.psyneuen.2009.03.016
    1. Rush AJ, Giles DE, Schlesser MA, Orsulak PJ, Parker CR, Jr, Weissenburger JE, et al. The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry (1996) 57:470–84.10.4088/JCP.v57n1006
    1. Owashi T, Otsubo T, Oshima A, Nakagome K, Higuchi T, Kamijima K. Longitudinal neuroendocrine changes assessed by dexamethasone/CRH and growth hormone releasing hormone tests in psychotic depression. Psychoneuroendocrinology (2008) 33:152–61.10.1016/j.psyneuen.2007.10.011
    1. Sher L, Oquendo MA, Burke AK, Cooper TB, Mann JJ. Combined dexamethasone suppression-corticotrophin-releasing hormone stimulation test in medication-free major depression and healthy volunteers. J Affect Disord (2013) 151:1108–12.10.1016/j.jad.2013.06.049
    1. Behnken A, Bellingrath S, Symanczik JP, Rieck MJ, Zavorotnyy M, Domschke K, et al. Associations between cognitive performance and cortisol reaction to the DEX/CRH test in patients recovered from depression. Psychoneuroendocrinology (2013) 38:447–5410.1016/j.psyneuen.2012.07.005
    1. Deuschle M, Schweiger U, Gotthardt U, Weber B, Korner A, Schmider J, et al. The combined dexamethasone/corticotropin-releasing hormone stimulation test is more closely associated with features of diurnal activity of the hypothalamo-pituitary-adrenocortical system than the dexamethasone suppression test. Biol Psychiatry (1998) 43:762–6.10.1016/S0006-3223(97)00276-X
    1. Mokhtari M, Arfken C, Boutros N. The DEX/CRH test for major depression: a potentially useful diagnostic test. Psychiatry Res (2013) 208:131–9.10.1016/j.psychres.2012.09.032
    1. Honda K, Sone M, Tamura N, Sonoyama T, Taura D, Kojima K, et al. Adrenal reserve function after unilateral adrenalectomy in patients with primary aldosteronism. J Hypertens (2013) 31:2010–7.10.1097/HJH.0b013e3283635789
    1. Herman P, Tan CT, Van Den Abbeele T, Escoubet B, Friedlander G, Huy PT. Glucocorticosteroids increase sodium transport in middle ear epithelium. Am J Physiol (1997) 272:C184–90.
    1. Cameron HA, Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience (1994) 61:203–9.10.1016/0306-4522(94)90224-0
    1. Wong EY, Herbert J. Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience (2006) 137:83–92.10.1016/j.neuroscience.2005.08.073
    1. Brummelte S, Galea LA. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience (2010) 168:680–90.10.1016/j.neuroscience.2010.04.023
    1. Sapolsky RM. Glucocorticoid toxicity in the hippocampus: reversal by supplementation with brain fuels. J Neurosci (1986) 6:2240–4.
    1. Crochemore C, Lu J, Wu Y, Liposits Z, Sousa N, Holsboer F, et al. Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry (2005) 10:790–8.10.1038/sj.mp.4001679
    1. Andres S, Cardenas S, Parra C, Bravo J, Greiner M, Rojas P, et al. Effects of long-term adrenalectomy on apoptosis and neuroprotection in the rat hippocampus. Endocrine (2006) 29:299–307.10.1385/ENDO:29:2:299
    1. Liu W, Shu XJ, Chen FY, Zhu C, Sun XH, Liu LJ, et al. Tianeptine reverses stress-induced asymmetrical hippocampal volume and N-acetylaspartate loss in rats: an in vivo study. Psychiatry Res (2011) 194:385–92.10.1016/j.pscychresns.2011.02.007
    1. Woolley CS, Gould E, Mcewen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res (1990) 531:225–3110.1016/0006-8993(90)90778-A
    1. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci (1990) 10:2897–902.
    1. Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida OF, et al. Corticosteroid status influences the volume of the rat cingulate cortex – a magnetic resonance imaging study. J Psychiatr Res (2005) 39:451–60.10.1016/j.jpsychires.2005.01.003
    1. Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci (2005) 25:7792–800.10.1523/JNEUROSCI.1598-05.2005
    1. Almeida OF, Conde GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, et al. Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J (2000) 14:779–90.10.1096/fj.1530-6860
    1. Crochemore C, Michaelidis TM, Fischer D, Loeffler JP, Almeida OF. Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB J (2002) 16:761–70.10.1096/fj.01-0577com
    1. Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, et al. Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry (2005) 29:1214–24.10.1016/j.pnpbp.2005.08.007
    1. Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry (2007) 12:331–59.10.1038/sj.mp.4001949
    1. Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry (2013) 45:54–63.10.1016/j.pnpbp.2013.04.009
    1. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience (2013) 246:199–229.10.1016/j.neuroscience.2013.04.060
    1. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry (2003) 54:70–5.10.1016/S0006-3223(03)00181-1
    1. Green CR, Corsi-Travali S, Neumeister A. The role of BDNF-TrkB signaling in the pathogenesis of PTSD. J Depress Anxiety (2013) 2013.10.4172/2167-1044.S4-006
    1. Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry (2002) 51:775–87.10.1016/S0006-3223(01)01362-2
    1. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res (2002) 53:865–71.10.1016/S0022-3999(02)00429-4
    1. Pompili M, Serafini G, Innamorati M, Moller-Leimkuhler AM, Giupponi G, Girardi P, et al. The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a selective overview for the implications of suicide prevention. Eur Arch Psychiatry Clin Neurosci (2010) 260:583–600.10.1007/s00406-010-0108-z
    1. Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev (2014) 38:173–92.10.1016/j.neubiorev.2013.11.009
    1. Song C, Wang H. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry (2011) 35:760–8.10.1016/j.pnpbp.2010.06.020
    1. Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM. Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry (2011) 35:722–9.10.1016/j.pnpbp.2010.04.011
    1. Postal M, Appenzeller S. The importance of cytokines and autoantibodies in depression. Autoimmun Rev (2014) 14(1):30–5.10.1016/j.autrev.2014.09.001
    1. Kunugi H, Hori H, Adachi N, Numakawa T. Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry Clin Neurosci (2010) 64:447–59.10.1111/j.1440-1819.2010.02135.x
    1. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol (2011) 10:819–28.10.1016/S1474-4422(11)70072-2
    1. Jiang T, Yu JT, Tian Y, Tan L. Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res (2013) 10:852–67.10.2174/15672050113109990155
    1. Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, et al. Effects of multiple genetic loci on age at onset in late-onset alzheimer disease: a genome-wide association study. JAMA Neurol (2014) 71(11):1394–404.10.1001/jamaneurol.2014.1491
    1. Dhikav V, Sethi M, Anand KS. Medial temporal lobe atrophy in Alzheimer’s disease/mild cognitive impairment with depression. Br J Radiol (2014) 87:20140150.10.1259/bjr.20140150
    1. Wu KY, Hsiao IT, Chen CS, Chen CH, Hsieh CJ, Wai YY, et al. Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on 18F-florbetapir (AV-45/Amyvid) positron emission tomography. Eur J Nucl Med Mol Imaging (2014) 41:714–22.10.1007/s00259-013-2627-0
    1. Chi S, Yu JT, Tan MS, Tan L. Depression in Alzheimer’s disease: epidemiology, mechanisms, and management. J Alzheimers Dis (2014) 42:739–5510.3233/JAD-140324
    1. Gao Y, Huang C, Zhao K, Ma L, Qiu X, Zhang L, et al. Depression as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Int J Geriatr Psychiatry (2013) 28:441–9.10.1002/gps.3845
    1. Vilalta-Franch J, Lopez-Pousa S, Llinas-Regla J, Calvo-Perxas L, Merino-Aguado J, Garre-Olmo J. Depression subtypes and 5-year risk of dementia and Alzheimer disease in patients aged 70 years. Int J Geriatr Psychiatry (2013) 28:341–50.10.1002/gps.3826
    1. Saczynski JS, Beiser A, Seshadri S, Auerbach S, Wolf PA, Au R. Depressive symptoms and risk of dementia: the Framingham Heart Study. Neurology (2010) 75:35–41.10.1212/WNL.0b013e3181e62138
    1. Belleville S, Fouquet C, Duchesne S, Collins DL, Hudon C. Detecting early preclinical Alzheimer’s disease via cognition, neuropsychiatry, and neuroimaging: qualitative review and recommendations for testing. J Alzheimers Dis (2014) 42(Suppl 4):S375–82.10.3233/JAD-141470
    1. Rapp MA, Schnaider-Beeri M, Purohit DP, Perl DP, Haroutunian V, Sano M. Increased neurofibrillary tangles in patients with Alzheimer disease with comorbid depression. Am J Geriatr Psychiatry (2008) 16:168–74.10.1097/JGP.0b013e31816029ec
    1. Spalletta G, Caltagirone C, Girardi P, Gianni W, Casini AR, Palmer K. The role of persistent and incident major depression on rate of cognitive deterioration in newly diagnosed Alzheimer’s disease patients. Psychiatry Res (2012) 198:263–8.10.1016/j.psychres.2011.11.018
    1. Sepehry AA, Lee PE, Hsiung GY, Beattie BL, Jacova C. Effect of selective serotonin reuptake inhibitors in Alzheimer’s disease with comorbid depression: a meta-analysis of depression and cognitive outcomes. Drugs Aging (2012) 29:793–806.10.1007/s40266-012-0012-5
    1. Munro CA, Longmire CF, Drye LT, Martin BK, Frangakis CE, Meinert CL, et al. Cognitive outcomes after sertaline treatment in patients with depression of Alzheimer disease. Am J Geriatr Psychiatry (2012) 20:1036–44.10.1097/JGP.0b013e31826ce4c5
    1. Mossaheb N, Zehetmayer S, Jungwirth S, Weissgram S, Rainer M, Tragl KH, et al. Are specific symptoms of depression predictive of Alzheimer’s dementia? J Clin Psychiatry (2012) 73:1009–15.10.4088/JCP.11m06962
    1. van der Mussele S, Fransen E, Struyfs H, Luyckx J, Marien P, Saerens J, et al. Depression in mild cognitive impairment is associated with progression to Alzheimer’s disease: a longitudinal study. J Alzheimers Dis (2014) 42:1239–50.10.3233/JAD-140405
    1. Ledo JH, Azevedo EP, Clarke JR, Ribeiro FC, Figueiredo CP, Foguel D, et al. Amyloid-beta oligomers link depressive-like behavior and cognitive deficits in mice. Mol Psychiatry (2013) 18:1053–410.1038/mp.2012.168
    1. Pamplona FA, Pandolfo P, Duarte FS, Takahashi RN, Prediger RD. Altered emotionality leads to increased pain tolerance in amyloid beta (Abeta1-40) peptide-treated mice. Behav Brain Res (2010) 212:96–102.10.1016/j.bbr.2010.03.052
    1. dos Santos VV, Santos DB, Lach G, Rodrigues AL, Farina M, De Lima TC, et al. Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-beta (Abeta(1-40)) administration in mice. Behav Brain Res (2013) 244:107–15.10.1016/j.bbr.2013.01.039
    1. Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, et al. Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol Aging (2013) 34:1426–39.10.1016/j.neurobiolaging.2012.11.015
    1. Murialdo G, Barreca A, Nobili F, Rollero A, Timossi G, Gianelli MV, et al. Dexamethasone effects on cortisol secretion in Alzheimer’s disease: some clinical and hormonal features in suppressor and nonsuppressor patients. J Endocrinol Invest (2000) 23(3):178–86.10.1007/BF03343703
    1. Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, et al. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry (2006) 163:2164–9.10.1176/appi.ajp.163.12.2164
    1. Linder J, Nolgard P, Nasman B, Back O, Uddhammar A, Olsson T. Decreased peripheral glucocorticoid sensitivity in Alzheimer’s disease. Gerontology (1993) 39:200–610.1159/000213534
    1. Nasman B, Olsson T, Viitanen M, Carlstrom K. A subtle disturbance in the feedback regulation of the hypothalamic-pituitary-adrenal axis in the early phase of Alzheimer’s disease. Psychoneuroendocrinology (1995) 20:211–20.10.1016/0306-4530(94)00054-E
    1. Rasmuson S, Nasman B, Carlstrom K, Olsson T. Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer’s disease. Dement Geriatr Cogn Disord (2002) 13:74–9.10.1159/000048637
    1. Pomara N, Singh RR, Deptula D, Lewitt PA, Bissette G, Stanley M, et al. CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiatry (1989) 26:500–4.10.1016/0006-3223(89)90071-1
    1. Davis KL, Mohs RC, Marin DB, Purohit DP, Perl DP, Lantz M, et al. Neuropeptide abnormalities in patients with early Alzheimer disease. Arch Gen Psychiatry (1999) 56:981–7.10.1001/archpsyc.56.11.981
    1. Edvinsson L, Minthon L, Ekman R, Gustafson L. Neuropeptides in cerebrospinal fluid of patients with Alzheimer’s disease and dementia with frontotemporal lobe degeneration. Dementia (1993) 4:167–71.
    1. Behan DP, Khongsaly O, Owens MJ, Chung HD, Nemeroff CB, De Souza EB. Corticotropin-releasing factor (CRF), CRF-binding protein (CRF-BP), and CRF/CRF-BP complex in Alzheimer’s disease and control postmortem human brain. J Neurochem (1997) 68:2053–60.10.1046/j.1471-4159.1997.68052053.x
    1. Powers RE, Walker LC, Desouza EB, Vale WW, Struble RG, Whitehouse PJ, et al. Immunohistochemical study of neurons containing corticotropin-releasing factor in Alzheimer’s disease. Synapse (1987) 1:405–10.10.1002/syn.890010504
    1. Kelley M, Kowall N. Corticotropin-releasing factor immunoreactive neurons persist throughout the brain in Alzheimer’s disease. Brain Res (1989) 501:392–6.10.1016/0006-8993(89)90657-4
    1. Hebda-Bauer EK, Simmons TA, Sugg A, Ural E, Stewart JA, Beals JL, et al. 3xTg-AD mice exhibit an activated central stress axis during early-stage pathology. J Alzheimers Dis (2013) 33:407–22.10.3233/JAD-2012-121438
    1. Bernardi F, Lanzone A, Cento RM, Spada RS, Pezzani I, Genazzani AD, et al. Allopregnanolone and dehydroepiandrosterone response to corticotropin-releasing factor in patients suffering from Alzheimer’s disease and vascular dementia. Eur J Endocrinol (2000) 142:466–71.10.1530/eje.0.1420466
    1. O’Brien JT, Ames D, Schweitzer I, Mastwyk M, Colman P. Enhanced adrenal sensitivity to adrenocorticotrophic hormone (ACTH) is evidence of HPA axis hyperactivity in Alzheimer’s disease. Psychol Med (1996) 26:7–14.10.1017/S0033291700033675
    1. Rasmuson S, Nasman B, Eriksson S, Carlstrom K, Olsson T. Adrenal responsivity in normal aging and mild to moderate Alzheimer’s disease. Biol Psychiatry (1998) 43:401–7.10.1016/S0006-3223(97)00283-7
    1. Ferrari E, Arcaini A, Gornati R, Pelanconi L, Cravello L, Fioravanti M, et al. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol (2000) 35:1239–50.10.1016/S0531-5565(00)00160-1
    1. Swaab DF, Raadsheer FC, Endert E, Hofman MA, Kamphorst W, Ravid R. Increased cortisol levels in aging and Alzheimer’s disease in postmortem cerebrospinal fluid. J Neuroendocrinol (1994) 6:681–7.10.1111/j.1365-2826.1994.tb00635.x
    1. Peavy GM, Santiago DP, Edland SD. Subjective memory complaints are associated with diurnal measures of salivary cortisol in cognitively intact older adults. Am J Geriatr Psychiatry (2013) 21:925–8.10.1016/j.jagp.2013.01.022
    1. Peavy GM, Jacobson MW, Salmon DP, Gamst AC, Patterson TL, Goldman S, et al. The influence of chronic stress on dementia-related diagnostic change in older adults. Alzheimer Dis Assoc Disord (2012) 26:260–6.10.1097/WAD.0b013e3182389a9c
    1. Peavy GM, Lange KL, Salmon DP, Patterson TL, Goldman S, Gamst AC, et al. The effects of prolonged stress and APOE genotype on memory and cortisol in older adults. Biol Psychiatry (2007) 62:472–8.10.1016/j.biopsych.2007.03.013
    1. Opitz B. Memory function and the hippocampus. Front Neurol Neurosci (2014) 34:51–910.1159/000356422
    1. Murialdo G, Nobili F, Rollero A, Gianelli MV, Copello F, Rodriguez G, et al. Hippocampal perfusion and pituitary-adrenal axis in Alzheimer’s disease. Neuropsychobiology (2000) 42:51–7.10.1159/000026672
    1. Laske C, Stellos K, Hoffmann N, Stransky E, Straten G, Eschweiler GW, et al. Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol (2011) 14:399–404.10.1017/S1461145710001008
    1. Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol (2012) 69:1318–2510.1001/archneurol.2012.1282
    1. Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype. Neurology (2001) 56:1094–810.1212/WNL.56.8.1094
    1. Soares HD, Potter WZ, Pickering E, Kuhn M, Immermann FW, Shera DM, et al. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol (2012) 69:1310–7.10.1001/archneurol.2012.1070
    1. Poirier J, Minnich A, Davignon J. Apolipoprotein E, synaptic plasticity and Alzheimer’s disease. Ann Med (1995) 27:663–70.10.3109/07853899509019253
    1. Fiocco AJ, Poirier J, Joober R, Nair NP, Lupien SJ. Acute and long-term associations between ApoE genetic polymorphism, cortisol levels, and declarative memory performance in older adults. Psychoneuroendocrinology (2008) 33:625–33.10.1016/j.psyneuen.2008.02.002
    1. Samieri C, Proust-Lima C, Glymour MM, Okereke OI, Amariglio RE, Sperling RA, et al. Subjective cognitive concerns, episodic memory, and the APOE epsilon4 allele. Alzheimers Dement (2014) 10:752–759e751.10.1016/j.jalz.2014.06.012
    1. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron (2003) 39:409–21.10.1016/S0896-6273(03)00434-3
    1. Chakroborty S, Kim J, Schneider C, Jacobson C, Molgo J, Stutzmann GE. Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice. J Neurosci (2012) 32:8341–53.10.1523/JNEUROSCI.0936-12.2012
    1. Romano A, Pace L, Tempesta B, Lavecchia AM, Macheda T, Bedse G, et al. Depressive-like behavior is paired to monoaminergic alteration in a murine model of Alzheimer’s disease. Int J Neuropsychopharmacol (2014) 18(4):pyu020.10.1093/ijnp/pyu020
    1. Iascone DM, Padidam S, Pyfer MS, Zhang X, Zhao L, Chin J. Impairments in neurogenesis are not tightly linked to depressive behavior in a transgenic mouse model of Alzheimer’s disease. PLoS One (2013) 8:e79651.10.1371/journal.pone.0079651
    1. Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci (2006) 7:697–709.10.1038/nrn1970
    1. Jeong YH, Kim JM, Yoo J, Lee SH, Kim HS, Suh YH. Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer’s disease model. J Neurochem (2011) 119:1282–93.10.1111/j.1471-4159.2011.07514.x
    1. Pang TY, Hannan AJ. Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology (2013) 64:515–28.10.1016/j.neuropharm.2012.06.029
    1. Holmes C, Arranz M, Collier D, Powell J, Lovestone S. Depression in Alzheimer’s disease: the effect of serotonin receptor gene variation. Am J Med Genet B Neuropsychiatr Genet (2003) 119B:40–3.10.1002/ajmg.b.10068
    1. Borroni B, Archetti S, Costanzi C, Grassi M, Ferrari M, Radeghieri A, et al. Role of BDNF Val66Met functional polymorphism in Alzheimer’s disease-related depression. Neurobiol Aging (2009) 30:1406–12.10.1016/j.neurobiolaging.2007.11.023
    1. Arlt S, Demiralay C, Tharun B, Geisel O, Storm N, Eichenlaub M, et al. Genetic risk factors for depression in Alzheimer‘s disease patients. Curr Alzheimer Res (2013) 10:72–81.10.2174/156720513804871435
    1. Liu X, Chan CB, Qi Q, Xiao G, Luo HR, He X, et al. Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression. J Med Chem (2012) 55:8524–37.10.1021/jm301099x
    1. Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, et al. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol (2014) 18(4):pyu077.10.1093/ijnp/pyu077
    1. Devi L, Ohno M. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology (2012) 37:434–44.10.1038/npp.2011.191
    1. Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch HM, Prickaerts J. 7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice. Behav Brain Res (2013) 257:8–12.10.1016/j.bbr.2013.09.029
    1. Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, Laferla FM. 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS One (2014) 9:e91453.10.1371/journal.pone.0091453
    1. Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, et al. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology (2014) 39:638–50.10.1038/npp.2013.243
    1. O’Leary JC, III, Dharia S, Blair LJ, Brady S, Johnson AG, Peters M, et al. A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One (2011) 6:e24840.10.1371/journal.pone.0024840
    1. Menke A, Klengel T, Rubel J, Bruckl T, Pfister H, Lucae S, et al. Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav (2013) 12:289–96.10.1111/gbb.12026
    1. Szczepankiewicz A, Leszczynska-Rodziewicz A, Pawlak J, Narozna B, Rajewska-Rager A, Wilkosc M, et al. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J Affect Disord (2014) 164:33–7.10.1016/j.jad.2014.04.002
    1. Jackson HM, Soto I, Graham LC, Carter GW, Howell GR. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer’s disease. BMC Genomics (2013) 14:831.10.1186/1471-2164-14-831
    1. Pugh PL, Richardson JC, Bate ST, Upton N, Sunter D. Non-cognitive behaviours in an APP/PS1 transgenic model of Alzheimer’s disease. Behav Brain Res (2007) 178:18–28.10.1016/j.bbr.2006.11.044
    1. Locke DE, Dueck AC, Stonnington CM, Knopman DS, Geda YE, Caselli RJ. Depressive symptoms in healthy apolipoprotein E epsilon4 carriers and noncarriers: a longitudinal study. J Clin Psychiatry (2013) 74:1256–61.10.4088/JCP.13m08564
    1. Shu H, Yuan Y, Xie C, Bai F, You J, Li L, et al. Imbalanced hippocampal functional networks associated with remitted geriatric depression and apolipoprotein E epsilon4 allele in nondemented elderly: a preliminary study. J Affect Disord (2014) 164:5–13.10.1016/j.jad.2014.03.048
    1. Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, et al. R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimers Dement (2014) 10:602–608e604.10.1016/j.jalz.2014.05.1751
    1. Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J (2010) 10:375–84.10.1038/tpj.2009.69
    1. Bruno D, Nierenberg JJ, Ritchie JC, Lutz MW, Pomara N. Cerebrospinal fluid cortisol concentrations in healthy elderly are affected by both APOE and TOMM40 variants. Psychoneuroendocrinology (2012) 37:366–71.10.1016/j.psyneuen.2011.07.006
    1. de Quervain DJ, Poirier R, Wollmer MA, Grimaldi LM, Tsolaki M, Streffer JR, et al. Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Hum Mol Genet (2004) 13:47–52.10.1093/hmg/ddg361
    1. Manenschijn L, Van Den Akker EL, Lamberts SW, Van Rossum EF. Clinical features associated with glucocorticoid receptor polymorphisms. An overview. Ann N Y Acad Sci (2009) 1179:179–98.10.1111/j.1749-6632.2009.05013.x
    1. Spijker AT, van Rossum EF. Glucocorticoid receptor polymorphisms in major depression. Focus on glucocorticoid sensitivity and neurocognitive functioning. Ann N Y Acad Sci (2009) 1179:199–215.10.1111/j.1749-6632.2009.04985.x
    1. Tsolakidou AF, Coulocheri SA, Trikkas G, Moutsatsou P. Gene analysis of the glucocorticoid receptor alpha in Alzheimer’s disease. Clin Chim Acta (2004) 349:167–7210.1016/j.cccn.2004.06.014
    1. Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, et al. Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-beta peptide injection in rats. PLoS One (2013) 8:e53117.10.1371/journal.pone.0053117
    1. Touma C, Ambree O, Gortz N, Keyvani K, Lewejohann L, Palme R, et al. Age- and sex-dependent development of adrenocortical hyperactivity in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging (2004) 25:893–904.10.1016/j.neurobiolaging.2003.09.004
    1. Murialdo G, Barreca A, Nobili F, Rollero A, Timossi G, Gianelli MV, et al. Relationships between cortisol, dehydroepiandrosterone sulphate and insulin-like growth factor-I system in dementia. J Endocrinol Invest (2001) 24:139–46.10.1007/BF03343833
    1. Gu XM, Huang HC, Jiang ZF. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer’s disease. Neurosci Bull (2012) 28:631–40.10.1007/s12264-012-1270-2
    1. Yan LJ, Xiao M, Chen R, Cai Z. Metabolic dysfunction of astrocyte: an initiating factor in beta-amyloid pathology? Aging Neurodegener (2013) 1:7–14.
    1. Nilsen LH, Witter MP, Sonnewald U. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer’s disease. J Cereb Blood Flow Metab (2014) 34:906–14.10.1038/jcbfm.2014.37
    1. Szuster-Ciesielska A, Slotwinska M, Stachura A, Marmurowska-Michalowska H, Dubas-Slemp H, Bojarska-Junak A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry (2008) 32:686–94.10.1016/j.pnpbp.2007.11.012
    1. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry (2010) 67:360–8.10.1001/archgenpsychiatry.2010.22
    1. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH, Rothman DL, et al. Glutamate metabolism in major depressive disorder. Am J Psychiatry (2014) 171(12):1320–710.1176/appi.ajp.2014.14010067
    1. Lambert KG, Gerecke KM, Quadros PS, Doudera E, Jasnow AM, Kinsley CH. Activity-stress increases density of GFAP-immunoreactive astrocytes in the rat hippocampus. Stress (2000) 3:275–84.10.3109/10253890009001133
    1. Johnson EA, O’callaghan JP, Miller DB. Chronic treatment with supraphysiological levels of corticosterone enhances d-MDMA-induced dopaminergic neurotoxicity in the C57BL/6J female mouse. Brain Res (2002) 933:130–8.10.1016/S0006-8993(02)02310-7
    1. Tata DA, Marciano VA, Anderson BJ. Synapse loss from chronically elevated glucocorticoids: relationship to neuropil volume and cell number in hippocampal area CA3. J Comp Neurol (2006) 498:363–74.10.1002/cne.21071
    1. Hu W, Zhang M, Czeh B, Flugge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology (2010) 35:1693–707.10.1038/npp.2010.31
    1. Tang VM, Young AH, Tan H, Beasley C, Wang JF. Glucocorticoids increase protein carbonylation and mitochondrial dysfunction. Horm Metab Res (2013) 45:709–15.10.1055/s-0033-1345119
    1. Yu J, Yu B, He J, Zheng P, Mao X, Han G, et al. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice. PLoS One (2014) 9:e112628.10.1371/journal.pone.0112628
    1. Scerif M, Fuzesi T, Thomas JD, Kola B, Grossman AB, Fekete C, et al. CB1 receptor mediates the effects of glucocorticoids on AMPK activity in the hypothalamus. J Endocrinol (2013) 219:79–88.10.1530/JOE-13-0192
    1. Nakken GN, Jacobs DL, Thomson DM, Fillmore N, Winder WW. Effects of excess corticosterone on LKB1 and AMPK signaling in rat skeletal muscle. J Appl Physiol (1985) (2010) 108:298–305.10.1152/japplphysiol.00906.2009
    1. Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P, et al. Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid beta. J Neurosci (2014) 34:12230–8.10.1523/JNEUROSCI.1694-14.2014
    1. Hooshmand B, Polvikoski T, Kivipelto M, Tanskanen M, Myllykangas L, Erkinjuntti T, et al. Plasma homocysteine, Alzheimer and cerebrovascular pathology: a population-based autopsy study. Brain (2013) 136:2707–16.10.1093/brain/awt206
    1. Li JG, Pratico D. High levels of homocysteine results in cerebral amyloid angiopathy in mice. J Alzheimers Dis (2014) 43(1):29–35.10.3233/JAD-141101
    1. Zhao Y, Wu S, Gao X, Zhang Z, Gong J, Zhan R, et al. Inhibition of cystathionine beta-synthase is associated with glucocorticoids over-secretion in psychological stress-induced hyperhomocysteinemia rat liver. Cell Stress Chaperones (2013) 18:631–41.10.1007/s12192-013-0416-0
    1. Kitzlerova E, Fisar Z, Jirak R, Zverova M, Hroudova J, Benakova H, et al. Plasma homocysteine in Alzheimer’s disease with or without co-morbid depressive symptoms. Neuro Endocrinol Lett (2014) 35:42–9.
    1. Zheng Z, Wang J, Yi L, Yu H, Kong L, Cui W, et al. Correlation between behavioural and psychological symptoms of Alzheimer type dementia and plasma homocysteine concentration. Biomed Res Int (2014) 2014:383494.10.1155/2014/383494
    1. Dong H, Csernansky JG. Effects of stress and stress hormones on amyloid-beta protein and plaque deposition. J Alzheimers Dis (2009) 18:459–69.10.3233/JAD-2009-1152
    1. Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, et al. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry (2009) 14:95–105.10.1038/sj.mp.4002101
    1. Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, et al. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci (2011) 31:7840–7.10.1523/JNEUROSCI.0730-11.2011
    1. Sotiropoulos I, Catania C, Riedemann T, Fry JP, Breen KC, Michaelidis TM, et al. Glucocorticoids trigger Alzheimer disease-like pathobiochemistry in rat neuronal cells expressing human tau. J Neurochem (2008) 107:385–97.10.1111/j.1471-4159.2008.05613.x
    1. Kang JE, Cirrito JR, Dong H, Csernansky JG, Holtzman DM. Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci U S A (2007) 104:10673–8.10.1073/pnas.0700148104
    1. Li JJ, Dolios G, Wang R, Liao FF. Soluble beta-amyloid peptides, but not insoluble fibrils, have specific effect on neuronal microRNA expression. PLoS One (2014) 9:e90770.10.1371/journal.pone.0090770
    1. Abraham I, Harkany T, Horvath KM, Veenema AH, Penke B, Nyakas C, et al. Chronic corticosterone administration dose-dependently modulates Abeta(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. J Neuroendocrinol (2000) 12:486–94.10.1046/j.1365-2826.2000.00475.x
    1. Green KN, Billings LM, Roozendaal B, Mcgaugh JL, Laferla FM. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci (2006) 26:9047–56.10.1523/JNEUROSCI.2797-06.2006
    1. Dong H, Yuede CM, Yoo HS, Martin MV, Deal C, Mace AG, et al. Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576 mice. Neuroscience (2008) 155:154–63.10.1016/j.neuroscience.2008.05.017
    1. Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, et al. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci (2011) 31:14436–49.10.1523/JNEUROSCI.3836-11.2011
    1. Wang Y, Li M, Tang J, Song M, Xu X, Xiong J, et al. Glucocorticoids facilitate astrocytic amyloid-beta peptide deposition by increasing the expression of APP and BACE1 and decreasing the expression of amyloid-beta-degrading proteases. Endocrinology (2011) 152:2704–15.10.1210/en.2011-0145
    1. Guo Q, Zheng H, Justice NJ. Central CRF system perturbation in an Alzheimer’s disease knockin mouse model. Neurobiol Aging (2012) 33:2678–91.10.1016/j.neurobiolaging.2012.01.002
    1. Joshi YB, Chu J, Pratico D. Stress hormone leads to memory deficits and altered tau phosphorylation in a model of Alzheimer’s disease. J Alzheimers Dis (2012) 31:167–76.10.3233/JAD-2012-120328
    1. Baglietto-Vargas D, Medeiros R, Martinez-Coria H, Laferla FM, Green KN. Mifepristone alters amyloid precursor protein processing to preclude amyloid beta and also reduces tau pathology. Biol Psychiatry (2013) 74:357–66.10.1016/j.biopsych.2012.12.003
    1. Solodushko V, Bitko V, Fouty B. Dexamethasone and mifepristone increase retroviral infectivity through different mechanisms. Am J Physiol Lung Cell Mol Physiol (2009) 297:L538–45.10.1152/ajplung.00162.2009
    1. Belanoff JK, Rothschild AJ, Cassidy F, Debattista C, Baulieu EE, Schold C, et al. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol Psychiatry (2002) 52:386–92.10.1016/S0006-3223(02)01432-4
    1. Belanoff JK, Jurik J, Schatzberg LD, Debattista C, Schatzberg AF. Slowing the progression of cognitive decline in Alzheimer’s disease using mifepristone. J Mol Neurosci (2002) 19:201–6.10.1007/s12031-002-0033-3
    1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol (2006) 5:525–3510.1016/S1474-4422(06)70471-9
    1. McLaughlin NC, Piryatinsky I, Epstein-Lubow G, Marino L, Friedman JH. Neuropsychiatric symptoms in an inpatient Parkinson’s disease sample. Parkinsons Dis (2014) 2014:420240.10.1155/2014/420240
    1. Sagna A, Gallo JJ, Pontone GM. Systematic review of factors associated with depression and anxiety disorders among older adults with Parkinson’s disease. Parkinsonism Relat Disord (2014) 20:708–15.10.1016/j.parkreldis.2014.03.020
    1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry (2008) 79:368–7610.1136/jnnp.2007.131045
    1. Factor SA, Steenland NK, Higgins DS, Molho ES, Kay DM, Montimurro J, et al. Disease-related and genetic correlates of psychotic symptoms in Parkinson’s disease. Mov Disord (2011) 26:2190–5.10.1002/mds.23806
    1. Breen DP, Vuono R, Nawarathna U, Fisher K, Shneerson JM, Reddy AB, et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol (2014) 71:589–95.10.1001/jamaneurol.2014.65
    1. Tops M. Are the insular cortex and cortisol implicated in Parkinsonian features? Parkinsonism Relat Disord (2006) 12:467–71.10.1016/j.parkreldis.2006.04.007
    1. Schuurman AG, Van Den Akker M, Ensinck KT, Metsemakers JF, Knottnerus JA, Leentjens AF, et al. Increased risk of Parkinson’s disease after depression: a retrospective cohort study. Neurology (2002) 58:1501–4.10.1212/WNL.58.10.1501
    1. Burn DJ. Depression in Parkinson’s disease. Eur J Neurol (2002) 9(Suppl 3):44–5410.1046/j.1468-1331.9.s3.6.x
    1. Mayeux R, Stern Y, Williams JB, Cote L, Frantz A, Dyrenfurth I. Clinical and biochemical features of depression in Parkinson’s disease. Am J Psychiatry (1986) 143:756–910.1176/ajp.143.6.756
    1. Gotham AM, Brown RG, Marsden CD. Depression in Parkinson’s disease: a quantitative and qualitative analysis. J Neurol Neurosurg Psychiatry (1986) 49:381–910.1136/jnnp.49.4.381
    1. Cummings JL. Depression and Parkinson’s disease: a review. Am J Psychiatry (1992) 149:443–54.10.1176/ajp.149.4.443
    1. Vanderheyden JE, Gonce M, Bourgeois P, Cras P, De Nayer AR, Flamez A, et al. Epidemiology of major depression in Belgian parkinsonian patients. Acta Neurol Belg (2010) 110:148–56.
    1. Hu M, Cooper J, Beamish R, Jones E, Butterworth R, Catterall L, et al. How well do we recognise non-motor symptoms in a British Parkinson’s disease population? J Neurol (2011) 258:1513–7.10.1007/s00415-011-5972-6
    1. Tandberg E, Larsen JP, Aarsland D, Cummings JL. The occurrence of depression in Parkinson’s disease. A community-based study. Arch Neurol (1996) 53:175–910.1001/archneur.1996.00550020087019
    1. Schrag A, Selai C, Jahanshahi M, Quinn NP. The EQ-5D – a generic quality of life measure-is a useful instrument to measure quality of life in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry (2000) 69:67–7310.1136/jnnp.69.1.67
    1. Carod-Artal FJ, Ziomkowski S, Mourao Mesquita H, Martinez-Martin P. Anxiety and depression: main determinants of health-related quality of life in Brazilian patients with Parkinson’s disease. Parkinsonism Relat Disord (2008) 14:102–8.10.1016/j.parkreldis.2007.06.011
    1. Shulman LM, Taback RL, Rabinstein AA, Weiner WJ. Non-recognition of depression and other non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord (2002) 8:193–7.10.1016/S1353-8020(01)00015-3
    1. Srivastava A, Tang MX, Mejia-Santana H, Rosado L, Louis ED, Caccappolo E, et al. The relation between depression and parkin genotype: the CORE-PD study. Parkinsonism Relat Disord (2011) 17:740–4.10.1016/j.parkreldis.2011.07.008
    1. Perez-Lloret S, Rascol O. Parkinson disease: serotonin reuptake inhibitors for depression in PD. Nat Rev Neurol (2012) 8:365–610.1038/nrneurol.2012.111
    1. Richard IH, Mcdermott MP, Kurlan R, Lyness JM, Como PG, Pearson N, et al. A randomized, double-blind, placebo-controlled trial of antidepressants in Parkinson disease. Neurology (2012) 78:1229–36.10.1212/WNL.0b013e3182516244
    1. Dissanayaka NN, Sellbach A, Silburn PA, O’sullivan JD, Marsh R, Mellick GD. Factors associated with depression in Parkinson’s disease. J Affect Disord (2011) 132:82–810.1016/j.jad.2011.01.021
    1. Santangelo G, Vitale C, Trojano L, Picillo M, Moccia M, Pisano G, et al. Relationship between apathy and cognitive dysfunctions in de novo untreated Parkinson’s disease: a prospective longitudinal study. Eur J Neurol (2015) 22:253–60.10.1111/ene.12467
    1. Zahodne LB, Bernal-Pacheco O, Bowers D, Ward H, Oyama G, Limotai N, et al. Are selective serotonin reuptake inhibitors associated with greater apathy in Parkinson’s disease? J Neuropsychiatry Clin Neurosci (2012) 24:326–30.10.1176/appi.neuropsych.11090210
    1. van Mierlo TJ, Chung C, Foncke EM, Berendse HW, Van Den Heuvel OA. Depressive symptoms in Parkinson’s disease are related to decreased hippocampus and amygdala volume. Mov Disord (2015) 30:245–52.10.1002/mds.26112
    1. Kandiah N, Zainal NH, Narasimhalu K, Chander RJ, Ng A, Mak E, et al. Hippocampal volume and white matter disease in the prediction of dementia in Parkinson’s disease. Parkinsonism Relat Disord (2014) 20:1203–8.10.1016/j.parkreldis.2014.08.024
    1. Damholdt MF, Callesen MB, Moller A. Personality characteristics of depressed and non-depressed patients with Parkinson’s disease. J Neuropsychiatry Clin Neurosci (2014) 26(4):329–34.10.1176/appi.neuropsych.13040085
    1. Kummer A, Cardoso F, Teixeira AL. Suicidal ideation in Parkinson’s disease. CNS Spectr (2009) 14:431–610.1017/S109285290002040X
    1. Kostic VS, Pekmezovic T, Tomic A, Jecmenica-Lukic M, Stojkovic T, Spica V, et al. Suicide and suicidal ideation in Parkinson’s disease. J Neurol Sci (2010) 289:40–3.10.1016/j.jns.2009.08.016
    1. Lehrner J, Moser D, Klug S, Gleiss A, Auff E, Pirker W, et al. Subjective memory complaints, depressive symptoms and cognition in Parkinson’s disease patients. Eur J Neurol (2014) 21:1276–e1277.10.1111/ene.12470
    1. Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet (2004) 363:1783–93.10.1016/S0140-6736(04)16305-8
    1. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (1997) 276:2045–7.10.1126/science.276.5321.2045
    1. Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet (2009) 18:R48–59.10.1093/hmg/ddp012
    1. Paumier KL, Sukoff Rizzo SJ, Berger Z, Chen Y, Gonzales C, Kaftan E, et al. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson’s disease. PLoS One (2013) 8:e70274.10.1371/journal.pone.0070274
    1. Unger EL, Eve DJ, Perez XA, Reichenbach DK, Xu Y, Lee MK, et al. Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol Dis (2006) 21:431–43.10.1016/j.nbd.2005.08.005
    1. Graham DR, Sidhu A. Mice expressing the A53T mutant form of human alpha-synuclein exhibit hyperactivity and reduced anxiety-like behavior. J Neurosci Res (2010) 88:1777–83.10.1002/jnr.22331
    1. Rothman SM, Griffioen KJ, Vranis N, Ladenheim B, Cong WN, Cadet JL, et al. Neuronal expression of familial Parkinson’s disease A53T alpha-synuclein causes early motor impairment, reduced anxiety and potential sleep disturbances in mice. J Parkinsons Dis (2013) 3:215–29.10.3233/JPD-120130
    1. Kohl Z, Winner B, Ubhi K, Rockenstein E, Mante M, Munch M, et al. Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci (2012) 35:10–9.10.1111/j.1460-9568.2011.07933.x
    1. Berghauzen-Maciejewska K, Kuter K, Kolasiewicz W, Glowacka U, Dziubina A, Ossowska K, et al. Pramipexole but not imipramine or fluoxetine reverses the “depressive-like” behaviour in a rat model of preclinical stages of Parkinson’s disease. Behav Brain Res (2014) 271:343–53.10.1016/j.bbr.2014.06.029
    1. Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AA, et al. Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease. Front Behav Neurosci (2014) 8:133.10.3389/fnbeh.2014.00133
    1. Tadaiesky MT, Dombrowski PA, Da Cunha C, Takahashi RN. Effects of SR141716A on cognitive and depression-related behavior in an animal model of premotor Parkinson’s disease. Parkinsons Dis (2010) 2010:238491.10.4061/2010/238491
    1. Joutsa J, Rinne JO, Eskola O, Kaasinen V. Reduced striatal dopamine synthesis capacity is associated with symptoms of depression in patients with de novo unmedicated Parkinson’s disease. J Parkinsons Dis (2013) 3:325–9.10.3233/JPD-130205
    1. Luo C, Chen Q, Song W, Chen K, Guo X, Yang J, et al. Resting-state fMRI study on drug-naive patients with Parkinson’s disease and with depression. J Neurol Neurosurg Psychiatry (2014) 85:675–83.10.1136/jnnp-2013-306237
    1. Davie CA. A review of Parkinson’s disease. Br Med Bull (2008) 86:109–2710.1093/bmb/ldn013
    1. Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A (2013) 110:E4016–25.10.1073/pnas.1309143110
    1. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, et al. Missing pieces in the Parkinson’s disease puzzle. Nat Med (2010) 16:653–61.10.1038/nm.2165
    1. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol (2010) 120:131–43.10.1007/s00401-010-0711-0
    1. Connor DJ, Salmon DP, Sandy TJ, Galasko D, Hansen LA, Thal LJ. Cognitive profiles of autopsy-confirmed Lewy body variant vs pure Alzheimer disease. Arch Neurol (1998) 55:994–1000.10.1001/archneur.55.7.994
    1. Obeso JA, Marin C, Rodriguez-Oroz C, Blesa J, Benitez-Temino B, Mena-Segovia J, et al. The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol (2008) 64(Suppl 2):S30–46.10.1002/ana.21481
    1. Braak H, Thal DR, Del Tredici K. Nerve cells immunoreactive for p62 in select hypothalamic and brainstem nuclei of controls and Parkinson’s disease cases. J Neural Transm (2011) 118:809–19.10.1007/s00702-010-0508-2
    1. Whitehouse PJ, Vale WW, Zweig RM, Singer HS, Mayeux R, Kuhar MJ, et al. Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimer’s disease, Parkinson’s disease, and progressive supranuclear palsy. Neurology (1987) 37:905–9.10.1212/WNL.37.6.905
    1. Jolkkonen J, Hartikainen P, Soikkeli R, Bissette G, Nemeroff C, Riekkinen P. A correlation study of CSF neuropeptides in Alzheimer’s and Parkinson’s disease. Neuropeptides (1991) 19:97–102.10.1016/0143-4179(91)90138-9
    1. Huang CC, Lee EH. Alteration of corticotropin-releasing factor immunoreactivity in MPTP-treated rats. J Neurosci Res (1995) 41:471–80.10.1002/jnr.490410406
    1. Homma T, Mochizuki Y, Mizutani T. Phosphorylated alpha-synuclein immunoreactivity in the posterior pituitary lobe. Neuropathology (2012) 32:385–9.10.1111/j.1440-1789.2011.01273.x
    1. Cote TE, Felder R, Kebabian JW, Sekura RD, Reisine T, Affolter HU. D-2 dopamine receptor-mediated inhibition of pro-opiomelanocortin synthesis in rat intermediate lobe. Abolition by pertussis toxin or activators of adenylate cyclase. J Biol Chem (1986) 261:4555–61.
    1. Bellomo G, Santambrogio L, Fiacconi M, Scarponi AM, Ciuffetti G. Plasma profiles of adrenocorticotropic hormone, cortisol, growth hormone and prolactin in patients with untreated Parkinson’s disease. J Neurol (1991) 238:19–22.10.1007/BF00319704
    1. Gelpi E, Navarro-Otano J, Tolosa E, Gaig C, Compta Y, Rey MJ, et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord (2014) 29:1010–8.10.1002/mds.25776
    1. Halabe Bucay A. Activation of the proopiomelanocortin gene with ketoconazole as a treatment for Parkinson’s disease: a new hypothesis. Ann N Y Acad Sci (2008) 1144:237–42.10.1196/annals.1418.013
    1. Stypula G, Kunert-Radek J, Stepien H, Zylinska K, Pawlikowski M. Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with Parkinson’s disease. Neuroimmunomodulation (1996) 3:131–4.10.1159/000097237
    1. Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging (1997) 18:285–9.10.1016/S0197-4580(97)80309-0
    1. Charlett A, Dobbs RJ, Purkiss AG, Wright DJ, Peterson DW, Weller C, et al. Cortisol is higher in parkinsonism and associated with gait deficit. Acta Neurol Scand (1998) 97:77–85.10.1111/j.1600-0404.1998.tb00614.x
    1. Skogar O, Fall PA, Hallgren G, Lokk J, Bringer B, Carlsson M, et al. Diurnal salivary cortisol concentrations in Parkinson’s disease: increased total secretion and morning cortisol concentrations. Int J Gen Med (2011) 4:561–9.10.2147/IJGM.S20875
    1. Bordet R, Devos D, Brique S, Touitou Y, Guieu JD, Libersa C, et al. Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol (2003) 26:65–72.10.1097/00002826-200303000-00005
    1. Djamshidian A, O’sullivan SS, Papadopoulos A, Bassett P, Shaw K, Averbeck BB, et al. Salivary cortisol levels in Parkinson’s disease and its correlation to risk behaviour. J Neurol Neurosurg Psychiatry (2011) 82:1107–11.10.1136/jnnp.2011.245746
    1. Kostic VS, Covickovic-Sternic N, Beslac-Bumbasirevic L, Ocic G, Pavlovic D, Nikolic M. Dexamethasone suppression test in patients with Parkinson’s disease. Mov Disord (1990) 5:23–610.1002/mds.870050106
    1. Rabey JM, Scharf M, Oberman Z, Zohar M, Graff E. Cortisol, ACTH, and beta-endorphin after dexamethasone administration in Parkinson’s dementia. Biol Psychiatry (1990) 27:581–91.10.1016/0006-3223(90)90525-7
    1. Volpi R, Caffarra P, Boni S, Scaglioni A, Malvezzi L, Saginario A, et al. ACTH/cortisol involvement in the serotonergic disorder affecting the parkinsonian brain. Neuropsychobiology (1997) 35:73–8.10.1159/000119394
    1. Block ML, Li G, Qin L, Wu X, Pei Z, Wang T, et al. Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB J (2006) 20:251–8.10.1096/fj.05-4553com
    1. Volpi R, Caffarra P, Scaglioni A, Saginario A, Maestri D, Vourna S, et al. Lack of ACTH/cortisol and GH responses to intravenously-infused substance P in Parkinson’s disease. J Neural Transm Park Dis Dement Sect (1993) 6:99–107.10.1007/BF02261003
    1. Volpi R, Caffarra P, Marcato A, Scaglioni A, Maestri D, Delsignore R, et al. Reduced ACTH/cortisol responses to naloxone in men with Parkinson’s disease. J Neural Transm Park Dis Dement Sect (1991) 3:127–32.10.1007/BF02260887
    1. Volpi R, Caffarra P, Scaglioni A, Maestri D, Chiodera P, Coiro V. Restoration of ACTH/cortisol and LH responses to naloxone by chronic dopaminergic treatment in Parkinson’s disease. J Neural Transm Park Dis Dement Sect (1994) 7:1–11.10.1007/BF02252658
    1. Muller T, Muhlack S. Acute levodopa intake and associated cortisol decrease in patients with Parkinson disease. Clin Neuropharmacol (2007) 30:101–6.10.1097/01.WNF.0000240954.72186.91
    1. Muller T, Welnic J, Muhlack S. Acute levodopa administration reduces cortisol release in patients with Parkinson’s disease. J Neural Transm (2007) 114:347–50.10.1007/s00702-006-0552-0
    1. Engeln M, De Deurwaerdere P, Li Q, Bezard E, Fernagut PO. Widespread monoaminergic dysregulation of both motor and non-motor circuits in parkinsonism and dyskinesia. Cereb Cortex (2014).10.1093/cercor/bhu076
    1. Hanganu A, Bedetti C, Degroot C, Mejia-Constain B, Lafontaine AL, Soland V, et al. Mild cognitive impairment is linked with faster rate of cortical thinning in patients with Parkinson’s disease longitudinally. Brain (2014) 137:1120–9.10.1093/brain/awu036
    1. Hu X, Song X, Yuan Y, Li E, Liu J, Liu W, et al. Abnormal functional connectivity of the amygdala is associated with depression in Parkinson’s disease. Mov Disord (2015) 30:238–44.10.1002/mds.26087
    1. Savitz J, Hodgkinson CA, Martin-Soelch C, Shen PH, Szczepanik J, Nugent AC, et al. DRD2/ANKK1 Taq1A polymorphism (rs1800497) has opposing effects on D2/3 receptor binding in healthy controls and patients with major depressive disorder. Int J Neuropsychopharmacol (2013) 16:2095–101.10.1017/S146114571300045X
    1. Hayden EP, Klein DN, Dougherty LR, Olino TM, Laptook RS, Dyson MW, et al. The dopamine D2 receptor gene and depressive and anxious symptoms in childhood: associations and evidence for gene-environment correlation and gene-environment interaction. Psychiatr Genet (2010) 20:304–10.10.1097/YPG.0b013e32833adccb
    1. Roetker NS, Yonker JA, Lee C, Chang V, Basson JJ, Roan CL, et al. Multigene interactions and the prediction of depression in the Wisconsin Longitudinal Study. BMJ Open (2012) 2(4):e000944.10.1136/bmjopen-2012-000944
    1. Hemmings SM, Martin LI, Klopper M, Van Der Merwe L, Aitken L, De Wit E, et al. BDNF Val66Met and DRD2 Taq1A polymorphisms interact to influence PTSD symptom severity: a preliminary investigation in a South African population. Prog Neuropsychopharmacol Biol Psychiatry (2013) 40:273–80.10.1016/j.pnpbp.2012.10.011
    1. Liu YZ, Tang BS, Yan XX, Liu J, Ouyang DS, Nie LN, et al. Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. Eur J Clin Pharmacol (2009) 65:679–83.10.1007/s00228-009-0658-z
    1. McGuire V, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, et al. Association of DRD2 and DRD3 polymorphisms with Parkinson’s disease in a multiethnic consortium. J Neurol Sci (2011) 307:22–9.10.1016/j.jns.2011.05.031
    1. Lesch KP, Balling U, Gross J, Strauss K, Wolozin BL, Murphy DL, et al. Organization of the human serotonin transporter gene. J Neural Transm Gen Sect (1994) 95:157–6210.1007/BF01276434
    1. Collier DA, Stober G, Li T, Heils A, Catalano M, Di Bella D, et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry (1996) 1:453–60.
    1. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science (2003) 301:386–9.10.1126/science.1083968
    1. Menza MA, Palermo B, Dipaola R, Sage JI, Ricketts MH. Depression and anxiety in Parkinson’s disease: possible effect of genetic variation in the serotonin transporter. J Geriatr Psychiatry Neurol (1999) 12:49–52.10.1177/089198879901200202
    1. Mossner R, Henneberg A, Schmitt A, Syagailo YV, Grassle M, Hennig T, et al. Allelic variation of serotonin transporter expression is associated with depression in Parkinson’s disease. Mol Psychiatry (2001) 6:350–2.10.1038/sj.mp.4000849
    1. Burn DJ, Tiangyou W, Allcock LM, Davison J, Chinnery PF. Allelic variation of a functional polymorphism in the serotonin transporter gene and depression in Parkinson’s disease. Parkinsonism Relat Disord (2006) 12:139–41.10.1016/j.parkreldis.2005.11.005
    1. Guzey C, Allard P, Brannstrom T, Spigset O. Radioligand binding to brain dopamine and serotonin receptors and transporters in Parkinson’s disease: relation to gene polymorphisms. Int J Neurosci (2012) 122:124–32.10.3109/00207454.2011.631716
    1. Wust S, Kumsta R, Treutlein J, Frank J, Entringer S, Schulze TG, et al. Sex-specific association between the 5-HTT gene-linked polymorphic region and basal cortisol secretion. Psychoneuroendocrinology (2009) 34:972–82.10.1016/j.psyneuen.2009.01.011
    1. Taylor MK, Larson GE, Lauby MD. Genetic variants in serotonin and corticosteroid systems modulate neuroendocrine and cardiovascular responses to intense stress. Behav Brain Res (2014) 270:1–7.10.1016/j.bbr.2014.05.004
    1. Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Kawasaki K, Noya M, et al. 25-hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson’s disease. Mov Disord (2012) 27:264–71.10.1002/mds.24016
    1. Butler MW, Burt A, Edwards TL, Zuchner S, Scott WK, Martin ER, et al. Vitamin D receptor gene as a candidate gene for Parkinson disease. Ann Hum Genet (2011) 75:201–10.10.1111/j.1469-1809.2010.00631.x
    1. Tizaoui K, Kaabachi W, Hamzaoui A, Hamzaoui K. Association between vitamin D receptor polymorphisms and multiple sclerosis: systematic review and meta-analysis of case-control studies. Cell Mol Immunol (2014).10.1038/cmi.2014.47
    1. Taylor KL, Hadgkiss EJ, Jelinek GA, Weiland TJ, Pereira NG, Marck CH, et al. Lifestyle factors, demographics and medications associated with depression risk in an international sample of people with multiple sclerosis. BMC Psychiatry (2014) 14:327.10.1186/PREACCEPT-6871346891381394
    1. McGeer PL, Itagaki S, Boyes BE, Mcgeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology (1988) 38:1285–91.10.1212/WNL.38.8.1285
    1. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol (2003) 106:518–26.10.1007/s00401-003-0766-2
    1. Lorenzl S, Albers DS, Narr S, Chirichigno J, Beal MF. Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol (2002) 178:13–20.10.1006/exnr.2002.8019
    1. Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, et al. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics (2010) 51:474–9.10.1176/appi.psy.51.6.474
    1. Prajapati P, Sripada L, Singh K, Bhatelia K, Singh R. TNF-alpha regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim Biophys Acta (2015) 1852:451–61.10.1016/j.bbadis.2014.11.019
    1. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology (2014).10.1016/j.neuropharm.2014.10.020
    1. Lu X, Kim-Han JS, Harmon S, Sakiyama-Elbert SE, O’malley KL. The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol Neurodegener (2014) 9:17.10.1186/1750-1326-9-17
    1. Richter F, Gao F, Medvedeva V, Lee P, Bove N, Fleming SM, et al. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis (2014) 69:263–7510.1016/j.nbd.2014.05.012
    1. Strathearn KE, Yousef GG, Grace MH, Roy SL, Tambe MA, Ferruzzi MG, et al. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinsons disease. Brain Res (2014) 1555:60–77.10.1016/j.brainres.2014.01.047
    1. Fu SP, Wang JF, Xue WJ, Liu HM, Liu BR, Zeng YL, et al. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson inverted question marks disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation (2015) 12:9.10.1186/s12974-014-0230-3
    1. Zintzaras E, Hadjigeorgiou GM. The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson’s disease: a meta-analysis. J Hum Genet (2005) 50:560–6.10.1007/s10038-005-0295-z
    1. Gao L, Diaz-Corrales FJ, Carrillo F, Diaz-Martin J, Caceres-Redondo MT, Carballo M, et al. Brain-derived neurotrophic factor G196A polymorphism and clinical features in Parkinson’s disease. Acta Neurol Scand (2010) 122:41–5.10.1111/j.1600-0404.2009.01253.x
    1. Dai L, Wang D, Meng H, Zhang K, Fu L, Wu Y, et al. Association between the BDNF G196A and C270T polymorphisms and Parkinson’s disease: a meta-analysis. Int J Neurosci (2013) 123:675–83.10.3109/00207454.2013.798784
    1. Svetel M, Pekmezovic T, Markovic V, Novakovic I, Dobricic V, Djuric G, et al. No association between brain-derived neurotrophic factor G196A polymorphism and clinical features of Parkinson’s disease. Eur Neurol (2013) 70:257–62.10.1159/000352033
    1. Lee YH, Song GG. BDNF 196 G/A and 270 C/T polymorphisms and susceptibility to Parkinson’s disease: a meta-analysis. J Mot Behav (2014) 46:59–66.10.1080/00222895.2013.862199
    1. Vilarino-Guell C, Rajput A, Milnerwood AJ, Shah B, Szu-Tu C, Trinh J, et al. DNAJC13 mutations in Parkinson disease. Hum Mol Genet (2014) 23:1794–801.10.1093/hmg/ddt570
    1. Yu Z, Wang T, Xu J, Wang W, Wang G, Chen C, et al. Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J Hum Genet (2014) 60:85–90.10.1038/jhg.2014.110
    1. Bialecka M, Kurzawski M, Roszmann A, Robowski P, Sitek EJ, Honczarenko K, et al. BDNF G196A (Val66Met) polymorphism associated with cognitive impairment in Parkinson’s disease. Neurosci Lett (2014) 561:86–90.10.1016/j.neulet.2013.12.051
    1. van der Kolk NM, Speelman AD, Van Nimwegen M, Kessels RP, Inthout J, Hakobjan M, et al. BDNF polymorphism associates with decline in set shifting in Parkinson’s disease. Neurobiol Aging (2014).10.1016/j.neurobiolaging.2014.08.023
    1. Abdullah R, Basak I, Patil KS, Alves G, Larsen JP, Moller SG. Parkinson’s disease and age: the obvious but largely unexplored link. Exp Gerontol (2014).10.1016/j.exger.2014.09.014
    1. Gale CR, Braidwood EA, Winter PD, Martyn CN. Mortality from Parkinson’s disease and other causes in men who were prisoners of war in the far East. Lancet (1999) 354:2116–8.10.1016/S0140-6736(99)06264-9
    1. Clark AJ, Ritz B, Prescott E, Rod NH. Psychosocial risk factors, pre-motor symptoms and first-time hospitalization with Parkinson’s disease: a prospective cohort study. Eur J Neurol (2013) 20:1113–20.10.1111/ene.12117
    1. Park JM, Ho DH, Yun HJ, Kim HJ, Lee CH, Park SW, et al. Dexamethasone induces the expression of LRRK2 and alpha-synuclein, two genes that when mutated cause Parkinson’s disease in an autosomal dominant manner. BMB Rep (2013) 46:454–9.10.5483/BMBRep.2013.46.9.234
    1. Kim S, Jeon BS, Heo C, Im PS, Ahn TB, Seo JH, et al. Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson’s disease. FASEB J (2004) 18:1615–7.10.1096/fj.04-1917fje
    1. Snyder AM, Stricker EM, Zigmond MJ. Stress-induced neurological impairments in an animal model of Parkinsonism. Ann Neurol (1985) 18:544–51.10.1002/ana.410180506
    1. Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA. Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur J Neurosci (2008) 27:2133–46.10.1111/j.1460-9568.2008.06177.x
    1. Horowitz JM, Pastor DM, Kar S, Arinsburg SA, Hallas BH, Torres G. Regulation of hippocampal parkin protein by corticosteroids. Neuroreport (2003) 14:2327–30.10.1097/00001756-200312190-00008
    1. Pandya CD, Crider A, Pillai A. Glucocorticoid regulates parkin expression in mouse frontal cortex: implications in schizophrenia. Curr Neuropharmacol (2014) 12:100–7.10.2174/1570159X11666131120224950
    1. de Pablos RM, Herrera AJ, Espinosa-Oliva AM, Sarmiento M, Munoz MF, Machado A, et al. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J Neuroinflammation (2014) 11:34.10.1186/1742-2094-11-34
    1. Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci (2008) 28:10825–34.10.1523/JNEUROSCI.3001-08.2008
    1. Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol (2009) 8:1056–7210.1016/S1474-4422(09)70262-5
    1. Al-Mahdawi S, Virmouni SA, Pook MA. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases. Front Neurosci (2014) 8:397.10.3389/fnins.2014.00397
    1. Coppede F. The potential of epigenetic therapies in neurodegenerative diseases. Front Genet (2014) 5:220.10.3389/fgene.2014.00220
    1. Feng Y, Jankovic J, Wu YC. Epigenetic mechanisms in Parkinson’s disease. J Neurol Sci (2014) 349(1–2):3–910.1016/j.jns.2014.12.017
    1. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet (2014) 46:989–93.10.1038/ng.3043
    1. Coupland KG, Mellick GD, Silburn PA, Mather K, Armstrong NJ, Sachdev PS, et al. DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro. Mov Disord (2014) 29:1606–14.10.1002/mds.25784
    1. Tan YY, Wu L, Zhao ZB, Wang Y, Xiao Q, Liu J, et al. Methylation of alpha-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson’s disease patients. Parkinsonism Relat Disord (2014) 20:308–13.10.1016/j.parkreldis.2013.12.002
    1. Ewald ER, Wand GS, Seifuddin F, Yang X, Tamashiro KL, Potash JB, et al. Alterations in DNA methylation of Fkbp5 as a determinant of blood-brain correlation of glucocorticoid exposure. Psychoneuroendocrinology (2014) 44:112–22.10.1016/j.psyneuen.2014.03.003
    1. van der Doelen RH, Arnoldussen IA, Ghareh H, Van Och L, Homberg JR, Kozicz T. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain. Dev Psychopathol (2015) 27:123–35.10.1017/S0954579414001345
    1. Hohne N, Poidinger M, Merz F, Pfister H, Bruckl T, Zimmermann P, et al. FKBP5 genotype-dependent DNA methylation and mRNA regulation after psychosocial stress in remitted depression and healthy controls. Int J Neuropsychopharmacol (2014).10.1093/ijnp/pyu087
    1. Vukojevic V, Kolassa IT, Fastenrath M, Gschwind L, Spalek K, Milnik A, et al. Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. J Neurosci (2014) 34:10274–84.10.1523/JNEUROSCI.1526-14.2014
    1. Harper PS. The epidemiology of Huntington’s disease. Hum Genet (1992) 89:365–7610.1007/BF00194305
    1. Group HSDCR. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s disease collaborative research group. Cell (1993) 72:971–8310.1016/0092-8674(93)90585-E
    1. Persichetti F, Ambrose CM, Ge P, Mcneil SM, Srinidhi J, Anderson MA, et al. Normal and expanded Huntington’s disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol Med (1995) 1:374–83.
    1. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (1997) 277:1990–3.10.1126/science.277.5334.1990
    1. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP., Jr Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol (1985) 44:559–7710.1097/00005072-198511000-00003
    1. Kassubek J, Bernhard Landwehrmeyer G, Ecker D, Juengling FD, Muche R, Schuller S, et al. Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. Neuroreport (2004) 15:363–5.10.1097/00001756-200402090-00030
    1. Douaud G, Gaura V, Ribeiro MJ, Lethimonnier F, Maroy R, Verny C, et al. Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage (2006) 32:1562–75.10.1016/j.neuroimage.2006.05.057
    1. Ruocco HH, Lopes-Cendes I, Li LM, Santos-Silva M, Cendes F. Striatal and extrastriatal atrophy in Huntington’s disease and its relationship with length of the CAG repeat. Braz J Med Biol Res (2006) 39:1129–36.10.1590/S0100-879X2006000800016
    1. Zarowitz BJ, O’shea T, Nance M. Clinical, demographic, and pharmacologic features of nursing home residents with Huntington’s disease. J Am Med Dir Assoc (2014) 15:423–8.10.1016/j.jamda.2014.01.010
    1. Schoenfeld M, Myers RH, Cupples LA, Berkman B, Sax DS, Clark E. Increased rate of suicide among patients with Huntington’s disease. J Neurol Neurosurg Psychiatry (1984) 47:1283–7.10.1136/jnnp.47.12.1283
    1. Farrer LA. Suicide and attempted suicide in Huntington disease: implications for preclinical testing of persons at risk. Am J Med Genet (1986) 24:305–11.10.1002/ajmg.1320240211
    1. Wetzel HH, Gehl CR, Dellefave-Castillo L, Schiffman JF, Shannon KM, Paulsen JS. Suicidal ideation in Huntington disease: the role of comorbidity. Psychiatry Res (2011) 188:372–6.10.1016/j.psychres.2011.05.006
    1. Hubers AA, Van Duijn E, Roos RA, Craufurd D, Rickards H, Bernhard Landwehrmeyer G, et al. Suicidal ideation in a European Huntington’s disease population. J Affect Disord (2013) 151:248–58.10.1016/j.jad.2013.06.001
    1. Codori AM, Slavney PR, Rosenblatt A, Brandt J. Prevalence of major depression one year after predictive testing for Huntington’s disease. Genet Test (2004) 8:114–9.10.1089/gte.2004.8.114
    1. Larsson MU, Luszcz MA, Bui TH, Wahlin TB. Depression and suicidal ideation after predictive testing for Huntington’s disease: a two-year follow-up study. J Genet Couns (2006) 15:361–74.10.1007/s10897-006-9027-6
    1. Mindham RH, Steele C, Folstein MF, Lucas J. A comparison of the frequency of major affective disorder in Huntington’s disease and Alzheimer’s disease. J Neurol Neurosurg Psychiatry (1985) 48:1172–4.10.1136/jnnp.48.11.1172
    1. Riedel O, Klotsche J, Spottke A, Deuschl G, Forstl H, Henn F, et al. Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson’s disease. J Neurol (2010) 257:1073–82.10.1007/s00415-010-5465-z
    1. Myslobodsky M, Lalonde FM, Hicks L. Are patients with Parkinson’s disease suicidal? J Geriatr Psychiatry Neurol (2001) 14:120–410.1177/089198870101400304
    1. Julien CL, Thompson JC, Wild S, Yardumian P, Snowden JS, Turner G, et al. Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry (2007) 78:939–4310.1136/jnnp.2006.103309
    1. van Duijn E, Kingma EM, Timman R, Zitman FG, Tibben A, Roos RA, et al. Cross-sectional study on prevalences of psychiatric disorders in mutation carriers of Huntington’s disease compared with mutation-negative first-degree relatives. J Clin Psychiatry (2008) 69:1804–10.10.4088/JCP.v69n1116
    1. Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC. Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry (2007) 62:1341–6.10.1016/j.biopsych.2006.11.034
    1. van Duijn E, Craufurd D, Hubers AA, Giltay EJ, Bonelli R, Rickards H, et al. Neuropsychiatric symptoms in a European Huntington’s disease cohort (REGISTRY). J Neurol Neurosurg Psychiatry (2014) 85(12):1411–8.10.1136/jnnp-2013-307343
    1. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ. The lifetime history of major depression in women. Reliability of diagnosis and heritability. Arch Gen Psychiatry (1993) 50:863–70.10.1001/archpsyc.1993.01820230054003
    1. Breslau N, Schultz L, Peterson E. Sex differences in depression: a role for preexisting anxiety. Psychiatry Res (1995) 58:1–12.10.1016/0165-1781(95)02765-O
    1. Rowe KC, Paulsen JS, Langbehn DR, Wang C, Mills J, Beglinger LJ, et al. Patterns of serotonergic antidepressant usage in prodromal Huntington disease. Psychiatry Res (2012) 196:309–14.10.1016/j.psychres.2011.09.005
    1. Zielonka D, Marinus J, Roos RA, De Michele G, Di Donato S, Putter H, et al. The influence of gender on phenotype and disease progression in patients with Huntington’s disease. Parkinsonism Relat Disord (2012) 19:192–7.10.1016/j.parkreldis.2012.09.012
    1. Markianos M, Panas M, Kalfakis N, Vassilopoulos D. Plasma testosterone, dehydroepiandrosterone sulfate, and cortisol in female patients with Huntington’s disease. Neuro Endocrinol Lett (2007) 28:199–203.
    1. Holl AK, Wilkinson L, Painold A, Holl EM, Bonelli RM. Combating depression in Huntington’s disease: effective antidepressive treatment with venlafaxine XR. Int Clin Psychopharmacol (2010) 25:46–50.10.1097/YIC.0b013e3283348018
    1. Como PG, Rubin AJ, O’brien CF, Lawler K, Hickey C, Rubin AE, et al. A controlled trial of fluoxetine in nondepressed patients with Huntington’s disease. Mov Disord (1997) 12:397–401.10.1002/mds.870120319
    1. Beglinger LJ, Adams WH, Langbehn D, Fiedorowicz JG, Jorge R, Biglan K, et al. Results of the citalopram to enhance cognition in Huntington disease trial. Mov Disord (2014) 29:401–5.10.1002/mds.25750
    1. Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry (2005) 10:160–84.10.1038/sj.mp.4001580
    1. Low VF, Dragunow M, Tippett LJ, Faull RL, Curtis MA. No change in progenitor cell proliferation in the hippocampus in Huntington’s disease. Neuroscience (2011) 199:577–88.10.1016/j.neuroscience.2011.09.010
    1. Grote HE, Bull ND, Howard ML, Van Dellen A, Blakemore C, Bartlett PF, et al. Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur J Neurosci (2005) 22:2081–8.10.1111/j.1460-9568.2005.04365.x
    1. Milnerwood AJ, Cummings DM, Dallerac GM, Brown JY, Vatsavayai SC, Hirst MC, et al. Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet (2006) 15:1690–703.10.1093/hmg/ddl092
    1. Ghilan M, Bostrom CA, Hryciw BN, Simpson JM, Christie BR, Gil-Mohapel J. YAC128 Huntington’s disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease. Brain Res (2014) 1581:117–28.10.1016/j.brainres.2014.06.011
    1. Kipps CM, Duggins AJ, Mccusker EA, Calder AJ. Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington’s disease. J Cogn Neurosci (2007) 19:1206–17.10.1162/jocn.2007.19.7.1206
    1. Majid DS, Stoffers D, Sheldon S, Hamza S, Thompson WK, Goldstein J, et al. Automated structural imaging analysis detects premanifest Huntington’s disease neurodegeneration within 1 year. Mov Disord (2011) 26:1481–8.10.1002/mds.23656
    1. van den Bogaard SJ, Dumas EM, Ferrarini L, Milles J, Van Buchem MA, Van Der Grond J, et al. Shape analysis of subcortical nuclei in Huntington’s disease, global versus local atrophy – results from the TRACK-HD study. J Neurol Sci (2011) 307:60–8.10.1016/j.jns.2011.05.015
    1. Dogan I, Sass C, Mirzazade S, Kleiman A, Werner CJ, Pohl A, et al. Neural correlates of impaired emotion processing in manifest Huntington’s disease. Soc Cogn Affect Neurosci (2014) 9:671–80.10.1093/scan/nst029
    1. Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 50HT1A receptor expression. Front Behav Neurosci (2014) 8:199.10.3389/fnbeh.2014.00199
    1. Reynolds GP, Mason SL, Meldrum A, De Keczer S, Parnes H, Eglen RM, et al. 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol (1995) 114:993–8.10.1111/j.1476-5381.1995.tb13303.x
    1. Pang TY, Du X, Zajac MS, Howard ML, Hannan AJ. Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington’s disease. Hum Mol Genet (2009) 18:753–66.10.1093/hmg/ddn385
    1. Heuser IJ, Chase TN, Mouradian MM. The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol Psychiatry (1991) 30:943–52.10.1016/0006-3223(91)90007-9
    1. Leblhuber F, Peichl M, Neubauer C, Reisecker F, Steinparz FX, Windhager E, et al. Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. J Neurol Sci (1995) 132:76–9.10.1016/0022-510X(95)00114-H
    1. Hubers AA, Van Der Mast RC, Pereira AM, Roos RA, Veen LJ, Cobbaert CM, et al. Hypothalamic-pituitary-adrenal axis functioning in Huntington’s disease and its association with depressive symptoms and suicidality. J Neuroendocrinol (2015) 27(3):234–44.10.1111/jne.12255
    1. Bjorkqvist M, Petersen A, Bacos K, Isaacs J, Norlen P, Gil J, et al. Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington’s disease. Hum Mol Genet (2006) 15:1713–21.10.1093/hmg/ddl094
    1. Shirbin CA, Chua P, Churchyard A, Lowndes G, Hannan AJ, Pang TY, et al. Cortisol and depression in pre-diagnosed and early stage Huntington’s disease. Psychoneuroendocrinology (2013) 38:2439–47.10.1016/j.psyneuen.2012.10.020
    1. Aziz NA, Swaab DF, Pijl H, Roos RA. Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington’s disease: clinical consequences and therapeutic implications. Rev Neurosci (2007) 18:223–51.10.1515/REVNEURO.2007.18.3-4.223
    1. Goodman AO, Murgatroyd PR, Medina-Gomez G, Wood NI, Finer N, Vidal-Puig AJ, et al. The metabolic profile of early Huntington’s disease – a combined human and transgenic mouse study. Exp Neurol (2008) 210:691–8.10.1016/j.expneurol.2007.12.026
    1. Lalic NM, Maric J, Svetel M, Jotic A, Stefanova E, Lalic K, et al. Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol (2008) 65:476–80.10.1001/archneur.65.4.476
    1. Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C, et al. Neuroendocrine disturbances in Huntington’s disease. PLoS One (2009) 4:e4962.10.1371/journal.pone.0004962
    1. Aziz NA, Pijl H, Frolich M, Snel M, Streefland TC, Roelfsema F, et al. Systemic energy homeostasis in Huntington’s disease patients. J Neurol Neurosurg Psychiatry (2010) 81:1233–7.10.1136/jnnp.2009.191833
    1. Aziz NA, Anguelova GV, Marinus J, Lammers GJ, Roos RA. Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington’s disease. Parkinsonism Relat Disord (2010) 16:345–50.10.1016/j.parkreldis.2010.02.009
    1. van Duijn E, Selis MA, Giltay EJ, Zitman FG, Roos RA, Van Pelt H, et al. Hypothalamic-pituitary-adrenal axis functioning in Huntington’s disease mutation carriers compared with mutation-negative first-degree controls. Brain Res Bull (2010) 83:232–7.10.1016/j.brainresbull.2010.08.006
    1. Hult Lundh S, Nilsson N, Soylu R, Kirik D, Petersen A. Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington’s disease. Hum Mol Genet (2013) 22:3485–97.10.1093/hmg/ddt203
    1. Du X, Leang L, Mustafa T, Renoir T, Pang TY, Hannan AJ. Environmental enrichment rescues female-specific hyperactivity of the hypothalamic-pituitary-adrenal axis in a model of Huntington’s disease. Transl Psychiatry (2012) 2:e133.10.1038/tp.2012.58
    1. Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F, et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet (1999) 8:813–22.10.1093/hmg/8.5.813
    1. van der Burg JM, Bjorkqvist M, Brundin P. Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol (2009) 8:765–74.10.1016/S1474-4422(09)70178-4
    1. Howland RH. Mifepristone as a therapeutic agent in psychiatry. J Psychosoc Nurs Ment Health Serv (2013) 51:11–4.10.3928/02793695-20131120-01
    1. Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P. Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain (2008) 131:2860–9.10.1093/brain/awn244
    1. Soneson C, Fontes M, Zhou Y, Denisov V, Paulsen JS, Kirik D, et al. Early changes in the hypothalamic region in prodromal Huntington disease revealed by MRI analysis. Neurobiol Dis (2010) 40:531–43.10.1016/j.nbd.2010.07.013
    1. van Wamelen DJ, Aziz NA, Anink JJ, Roos RA, Swaab DF. Paraventricular nucleus neuropeptide expression in Huntington’s disease patients. Brain Pathol (2012) 22:654–6110.1111/j.1750-3639.2012.00565.x
    1. Petersen A, Gil J, Maat-Schieman ML, Bjorkqvist M, Tanila H, Araujo IM, et al. Orexin loss in Huntington’s disease. Hum Mol Genet (2005) 14:39–4710.1093/hmg/ddi004
    1. Gabery S, Murphy K, Schultz K, Loy CT, Mccusker E, Kirik D, et al. Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathol (2010) 120:777–88.10.1007/s00401-010-0742-6
    1. McQuaid RJ, Mcinnis OA, Abizaid A, Anisman H. Making room for oxytocin in understanding depression. Neurosci Biobehav Rev (2014) 45C:305–22.10.1016/j.neubiorev.2014.07.005
    1. Kudwa AE, Mcgivern RF, Handa RJ. Estrogen receptor beta and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats. Physiol Behav (2014) 129:287–96.10.1016/j.physbeh.2014.03.004
    1. Markianos M, Panas M, Kalfakis N, Vassilopoulos D. Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann Neurol (2005) 57:520–5.10.1002/ana.20428
    1. van Raamsdonk JM, Murphy Z, Selva DM, Hamidizadeh R, Pearson J, Petersen A, et al. Testicular degeneration in Huntington disease. Neurobiol Dis (2007) 26:512–20.10.1016/j.nbd.2007.01.006
    1. Papalexi E, Persson A, Bjorkqvist M, Petersen A, Woodman B, Bates GP, et al. Reduction of GnRH and infertility in the R6/2 mouse model of Huntington’s disease. Eur J Neurosci (2005) 22:1541–6.10.1111/j.1460-9568.2005.04324.x
    1. Hannan AJ, Ransome MI. Deficits in spermatogenesis but not neurogenesis are alleviated by chronic testosterone therapy in R6/1 Huntington’s disease mice. J Neuroendocrinol (2012) 24:341–56.10.1111/j.1365-2826.2011.02238.x
    1. Du X, Pang TY, Mo C, Renoir T, Wright DJ, Hannan AJ. The influence of the HPG axis on stress response and depressive-like behaviour in a transgenic mouse model of Huntington’s disease. Exp Neurol (2015) 263:63–71.10.1016/j.expneurol.2014.09.009
    1. Goodman AO, Morton AJ, Barker RA. Identifying sleep disturbances in Huntington’s disease using a simple disease-focused questionnaire. PLoS Curr (2010) 2:RRN1189.10.1371/currents.RRN1189
    1. Goodman AO, Rogers L, Pilsworth S, Mcallister CJ, Shneerson JM, Morton AJ, et al. Asymptomatic sleep abnormalities are a common early feature in patients with Huntington’s disease. Curr Neurol Neurosci Rep (2011) 11:211–7.10.1007/s11910-010-0163-x
    1. Kudo T, Schroeder A, Loh DH, Kuljis D, Jordan MC, Roos KP, et al. Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp Neurol (2011) 228:80–90.10.1016/j.expneurol.2010.12.011
    1. Oakeshott S, Balci F, Filippov I, Murphy C, Port R, Connor D, et al. Circadian abnormalities in motor activity in a BAC transgenic mouse model of Huntington’s disease. PLoS Curr (2011) 3:RRN1225.10.1371/currents.RRN1225
    1. Fisher SP, Black SW, Schwartz MD, Wilk AJ, Chen TM, Lincoln WU, et al. Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington’s disease. Brain (2013) 136:2159–72.10.1093/brain/awt132
    1. Jeantet Y, Cayzac S, Cho YH. beta oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington’s disease. PLoS One (2013) 8:e79509.10.1371/journal.pone.0079509
    1. Morton AJ, Rudiger SR, Wood NI, Sawiak SJ, Brown GC, Mclaughlan CJ, et al. Early and progressive circadian abnormalities in Huntington’s disease sheep are unmasked by social environment. Hum Mol Genet (2014) 23:3375–83.10.1093/hmg/ddu047
    1. Lazowski LK, Townsend B, Hawken ER, Jokic R, Du Toit R, Milev R. Sleep architecture and cognitive changes in olanzapine-treated patients with depression: a double blind randomized placebo controlled trial. BMC Psychiatry (2014) 14:202.10.1186/1471-244X-14-202
    1. Ng TH, Chung KF, Ho FY, Yeung WF, Yung KP, Lam TH. Sleep-wake disturbance in interepisode bipolar disorder and high-risk individuals: a systematic review and meta-analysis. Sleep Med Rev (2014) 20C:46–58.10.1016/j.smrv.2014.06.006
    1. Kung PY, Chou KR, Lin KC, Hsu HW, Chung MH. Sleep disturbances in patients with major depressive disorder: incongruence between sleep log and actigraphy. Arch Psychiatr Nurs (2015) 29:39–42.10.1016/j.apnu.2014.09.006
    1. Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry (2008) 13(786–799):741.10.1038/mp.2008.38
    1. Lall GS, Atkinson LA, Corlett SA, Broadbridge PJ, Bonsall DR. Circadian entrainment and its role in depression: a mechanistic review. J Neural Transm (2012) 119:1085–96.10.1007/s00702-012-0858-z
    1. McCarthy MJ, Welsh DK. Cellular circadian clocks in mood disorders. J Biol Rhythms (2012) 27:339–52.10.1177/0748730412456367
    1. van Wamelen DJ, Aziz NA, Anink JJ, Van Steenhoven R, Angeloni D, Fraschini F, et al. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington’s Disease. Sleep (2013) 36:117–2510.5665/sleep.2314
    1. Mazurek MF, Garside S, Beal MF. Cortical peptide changes in Huntington’s disease may be independent of striatal degeneration. Ann Neurol (1997) 41:540–7.10.1002/ana.410410418
    1. Fahrenkrug J, Popovic N, Georg B, Brundin P, Hannibal J. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J Mol Neurosci (2007) 31:139–48.10.1385/JMN/31:02:139
    1. Mazurek MF, Growdon JH, Beal MF, Martin JB. CSF vasopressin concentration is reduced in Alzheimer’s disease. Neurology (1986) 36:1133–710.1212/WNL.36.8.1133
    1. Srinivasan V, Zakaria R, Othman Z, Lauterbach EC, Acuna-Castroviejo D. Agomelatine in depressive disorders: its novel mechanisms of action. J Neuropsychiatry Clin Neurosci (2012) 24:290–30810.1176/appi.neuropsych.11090216
    1. Gupta S, Sharma B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington’s disease. Pharmacol Biochem Behav (2014) 122:122–35.10.1016/j.pbb.2014.03.022
    1. Chan EY, Nasir J, Gutekunst CA, Coleman S, Maclean A, Maas A, et al. Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Hum Mol Genet (2002) 11:945–59.10.1093/hmg/11.8.945
    1. Sheng G, Chang GQ, Lin JY, Yu ZX, Fang ZH, Rong J, et al. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med (2006) 12:526–33.10.1038/nm1382
    1. Cole DA, Cho SJ, Martin NC, Youngstrom EA, March JS, Findling RL, et al. Are increased weight and appetite useful indicators of depression in children and adolescents? J Abnorm Psychol (2012) 121:838–51.10.1037/a0028175
    1. Potter GG, Mcquoid DR, Steffens DC. Appetite loss and neurocognitive deficits in late-life depression. Int J Geriatr Psychiatry (2014).10.1002/gps.4196
    1. Li SH, Yu ZX, Li CL, Nguyen HP, Zhou YX, Deng C, et al. Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci (2003) 23:6956–64.
    1. Bertaux F, Sharp AH, Ross CA, Lehrach H, Bates GP, Wanker E. HAP1-huntingtin interactions do not contribute to the molecular pathology in Huntington’s disease transgenic mice. FEBS Lett (1998) 426:229–32.10.1016/S0014-5793(98)00352-4
    1. van Wamelen DJ, Aziz NA, Zhao J, Balesar R, Unmehopa U, Roos RA, et al. Decreased hypothalamic prohormone convertase expression in Huntington disease patients. J Neuropathol Exp Neurol (2013) 72:1126–34.10.1097/NEN.0000000000000010
    1. Paquet L, Massie B, Mains RE. Proneuropeptide Y processing in large dense-core vesicles: manipulation of prohormone convertase expression in sympathetic neurons using adenoviruses. J Neurosci (1996) 16:964–73.
    1. Horne EA, Coy J, Swinney K, Fung S, Cherry AE, Marrs WR, et al. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington’s disease and mouse models. Eur J Neurosci (2013) 37:429–40.10.1111/ejn.12045
    1. Decressac M, Prestoz L, Veran J, Cantereau A, Jaber M, Gaillard A. Neuropeptide Y stimulates proliferation, migration and differentiation of neural precursors from the subventricular zone in adult mice. Neurobiol Dis (2009) 34:441–9.10.1016/j.nbd.2009.02.017
    1. Decressac M, Wright B, Tyers P, Gaillard A, Barker RA. Neuropeptide Y modifies the disease course in the R6/2 transgenic model of Huntington’s disease. Exp Neurol (2010) 226:24–32.10.1016/j.expneurol.2010.07.022
    1. Welch WJ, Diamond MI. Glucocorticoid modulation of androgen receptor nuclear aggregation and cellular toxicity is associated with distinct forms of soluble expanded polyglutamine protein. Hum Mol Genet (2001) 10:3063–74.10.1093/hmg/10.26.3063
    1. Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, et al. Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Hum Mol Genet (2014) 23:2737–51.10.1093/hmg/ddt667
    1. Gayan J, Brocklebank D, Andresen JM, Alkorta-Aranburu G, Zameel Cader M, Roberts SA, et al. Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds. Genet Epidemiol (2008) 32:445–53.10.1002/gepi.20317
    1. Swami M, Hendricks AE, Gillis T, Massood T, Mysore J, Myers RH, et al. Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet (2009) 18:3039–47.10.1093/hmg/ddp242
    1. Metzger S, Saukko M, Van Che H, Tong L, Puder Y, Riess O, et al. Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet (2010) 128:453–9.10.1007/s00439-010-0873-9
    1. Metzger S, Walter C, Riess O, Roos RA, Nielsen JE, Craufurd D, et al. The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients. PLoS One (2013) 8:e68951.10.1371/journal.pone.0068951
    1. Marder K, Gu Y, Eberly S, Tanner CM, Scarmeas N, Oakes D, et al. Relationship of Mediterranean diet and caloric intake to phenoconversion in Huntington disease. JAMA Neurol (2013) 70:1382–8.10.1001/jamaneurol.2013.3487
    1. Deckel AW, Volmer P, Weiner R, Gary KA, Covault J, Sasso D, et al. Dietary arginine alters time of symptom onset in Huntington’s disease transgenic mice. Brain Res (2000) 875:187–95.10.1016/S0006-8993(00)02640-8
    1. Ruskin DN, Ross JL, Kawamura M, Jr, Ruiz TL, Geiger JD, Masino SA. A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington’s disease. Physiol Behav (2011) 103:501–7.10.1016/j.physbeh.2011.04.001
    1. Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S, Franich NR, et al. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener (2012) 7:12.10.1186/1750-1326-7-12
    1. Lu Z, Marks E, Chen J, Moline J, Barrows L, Raisbeck M, et al. Altered selenium status in Huntington’s disease: neuroprotection by selenite in the N171-82Q mouse model. Neurobiol Dis (2014) 71:34–42.10.1016/j.nbd.2014.06.022
    1. Carter RJ, Hunt MJ, Morton AJ. Environmental stimulation increases survival in mice transgenic for exon 1 of the Huntington’s disease gene. Mov Disord (2000) 15:925–37.10.1002/1531-8257(200009)15:5<925::AID-MDS1025>;2-Z
    1. van dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature (2000) 404:721–210.1038/35008142
    1. Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience (2006) 141:569–84.10.1016/j.neuroscience.2006.04.013
    1. Renoir T, Pang TY, Zajac MS, Chan G, Du X, Leang L, et al. Treatment of depressive-like behaviour in Huntington’s disease mice by chronic sertraline and exercise. Br J Pharmacol (2012) 165:1375–89.10.1111/j.1476-5381.2011.01567.x
    1. Mazarakis NK, Mo C, Renoir T, Van Dellen A, Deacon R, Blakemore C, et al. ‘Super-enrichment’ reveals dose-dependent therapeutic effects of environmental stimulation in a transgenic mouse model of Huntington’s disease. J Huntingtons Dis (2014) 3:299–309.10.3233/JHD-140118
    1. Mo C, Renoir T, Hannan AJ. Effects of chronic stress on the onset and progression of Huntington’s disease in transgenic mice. Neurobiol Dis (2014) 71:81–94.10.1016/j.nbd.2014.07.008
    1. Mo C, Renoir T, Hannan AJ. Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington’s disease and wildtype mice. Behav Brain Res (2014) 274:118–27.10.1016/j.bbr.2014.07.044
    1. Andero R, Choi DC, Ressler KJ. BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders. Prog Mol Biol Transl Sci (2014) 122:169–92.10.1016/B978-0-12-420170-5.00006-4
    1. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol (2014) 220:223–50.10.1007/978-3-642-45106-5_9
    1. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry (2003) 60:804–15.10.1001/archpsyc.60.8.804
    1. Pandey GN, Ren X, Rizavi HS, Conley RR, Roberts RC, Dwivedi Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol (2008) 11:1047–61.10.1017/S1461145708009000
    1. Dwivedi Y, Rizavi HS, Zhang H, Mondal AC, Roberts RC, Conley RR, et al. Neurotrophin receptor activation and expression in human postmortem brain: effect of suicide. Biol Psychiatry (2009) 65:319–28.10.1016/j.biopsych.2008.08.035
    1. Banerjee R, Ghosh AK, Ghosh B, Bhattacharyya S, Mondal AC. Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human postmortem brain. Clin Med Insights Pathol (2013) 6:1–11.10.4137/CMPath.S12530
    1. Ferrer I, Goutan E, Marin C, Rey MJ, Ribalta T. Brain-derived neurotrophic factor in Huntington disease. Brain Res (2000) 866:257–6110.1016/S0006-8993(00)02237-X
    1. Gines S, Bosch M, Marco S, Gavalda N, Diaz-Hernandez M, Lucas JJ, et al. Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci (2006) 23:649–58.10.1111/j.1460-9568.2006.04590.x
    1. Zuccato C, Marullo M, Conforti P, Macdonald ME, Tartari M, Cattaneo E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol (2008) 18:225–38.10.1111/j.1750-3639.2007.00111.x
    1. Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci (1995) 15:1768–77.
    1. Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A, et al. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res (2004) 1025:10–20.10.1016/j.brainres.2004.06.085
    1. Schaaf MJ, Hoetelmans RW, De Kloet ER, Vreugdenhil E. Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus. J Neurosci Res (1997) 48:334–41.10.1002/(SICI)1097-4547(19970515)48:4<334::AID-JNR5>;2-C
    1. Chao HM, Sakai RR, Ma LY, Mcewen BS. Adrenal steroid regulation of neurotrophic factor expression in the rat hippocampus. Endocrinology (1998) 139:3112–8.10.1210/endo.139.7.6114
    1. Schaaf MJ, De Jong J, De Kloet ER, Vreugdenhil E. Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res (1998) 813:112–2010.1016/S0006-8993(98)01010-5
    1. Hodes GE, Brookshire BR, Hill-Smith TE, Teegarden SL, Berton O, Lucki I. Strain differences in the effects of chronic corticosterone exposure in the hippocampus. Neuroscience (2012) 222:269–80.10.1016/j.neuroscience.2012.06.017
    1. Pandya C, Kutiyanawalla A, Turecki G, Pillai A. Glucocorticoid regulates TrkB protein levels via c-Cbl dependent ubiquitination: a decrease in c-Cbl mRNA in the prefrontal cortex of suicide subjects. Psychoneuroendocrinology (2014) 45:108–18.10.1016/j.psyneuen.2014.03.020
    1. Andero R, Daviu N, Escorihuela RM, Nadal R, Armario A. 7,8-dihydroxyflavone, a TrkB receptor agonist, blocks long-term spatial memory impairment caused by immobilization stress in rats. Hippocampus (2012) 22:399–408.10.1002/hipo.20906
    1. Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, et al. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum Mol Genet (2013) 22:2462–70.10.1093/hmg/ddt098
    1. Dunham JS, Deakin JF, Miyajima F, Payton A, Toro CT. Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. J Psychiatr Res (2009) 43:1175–84.10.1016/j.jpsychires.2009.03.008
    1. Duan W, Peng Q, Masuda N, Ford E, Tryggestad E, Ladenheim B, et al. Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington’s disease. Neurobiol Dis (2008) 30:312–22.10.1016/j.nbd.2008.01.015
    1. Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross CA, et al. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol (2008) 210:154–63.10.1016/j.expneurol.2007.10.015
    1. Renoir T, Zajac MS, Du X, Pang TY, Leang L, Chevarin C, et al. Sexually dimorphic serotonergic dysfunction in a mouse model of Huntington’s disease and depression. PLoS One (2011) 6:e22133.10.1371/journal.pone.0022133
    1. Zajac MS, Pang TY, Wong N, Weinrich B, Leang LS, Craig JM, et al. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. Hippocampus (2010) 20:621–36.10.1002/hipo.20658
    1. Harrison DJ, Busse M, Openshaw R, Rosser AE, Dunnett SB, Brooks SP. Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington’s disease mouse model. Exp Neurol (2013) 248:457–69.10.1016/j.expneurol.2013.07.014
    1. Busse M, Quinn L, Debono K, Jones K, Collett J, Playle R, et al. A randomized feasibility study of a 12-week community-based exercise program for people with Huntington’s disease. J Neurol Phys Ther (2013) 37:149–58.10.1097/NPT.0000000000000016
    1. Khalil H, Quinn L, Van Deursen R, Dawes H, Playle R, Rosser A, et al. What effect does a structured home-based exercise programme have on people with Huntington’s disease? A randomized, controlled pilot study. Clin Rehabil (2013) 27:646–58.10.1177/0269215512473762
    1. Martignoni E, Petraglia F, Costa A, Bono G, Genazzani AR, Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenal axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand (1990) 81(5):452–6.
    1. Rasmuson S, Nasman B, Olsson T. Increased serum levels of dehydroepiandrosterone (DHEA) and interleukin-6 (IL-6) in women with mild to moderate Alzheimer’s disease. Int Psychogeriatr (2011) 23(9):1386–9210.1017/S1041610211000810
    1. Arranz L, De Castro NM, Baeza I, Gimenez-Llort L, De la Fuente M. Effect of environmental enrichment on the immunoendocrine aging of male and female triple-transgenic 3xTg-AD mice for Alzheimer’s disease. J Alzheimers Dis (2011) 25(4):727–3710.3233/JAD-2011-110236
    1. Balldin J, Blennow K, Brane G, Gottfries CG, Karlsson I, Regland B, et al. Relationship between mental impairment and HPA axis activity in dementia disorders. Dementia (1994) 5(5):252–6.
    1. Gottfries CG, Balldin J, Blennow K, Brane G, Karlsson I, Regland B, et al. Regulation of the hypothalamic-pituitary-adrenal axis in dementia disorders. Ann N Y Acad Sci (1994) 746:336–43; discussion 343–4.
    1. Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S, et al. Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis (2007) 28(1):76–8210.1016/j.nbd.2007.06.013
    1. Airaghi L, Catania A, Gramigna C, Manfredi MG, Franceschi M, Zanussi C. Resistance of beta-endorphin to dexamethasone inhibition in Parkinson’s and Alzheimer’s diseases. Int J Neurosci (1991) 56(1–4):73–9.
    1. Franceschi M, Airaghi L, Gramigna C, Truci G, Manfredi MG, Canal N, et al. ACTH and cortisol secretion in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry (1991) 54(9):836–7.
    1. Robertson J, Curley J, Kaye J, Quinn J, Pfankuch T, Raber J. apoE isoforms and measures of anxiety in probably AD patients and Apoe-/- mice. Neurobiol Aging (2005) 26(5):637–43.
    1. Balldin J, Gottfries CG, Karlsson I, lindstedt G, Langstrom G, Walinder J. Dexamethasone suppression test and serum prolactin in dementia disorders. Br J Psychiatry (1983) 143:277–81.
    1. Hatzinger M, Z’Brun A, Hemmeter U, Seifritz Z, Baumann F, Holsboer-Trachsler E, et al. Hypothalamic-pituitary-adrenal system function in patients with Alzheimer’s disease. Neurobiol Aging (1995) 16(2):205–9.
    1. Ben-Shaul Y, Benmoyal-Segal L, Ben-Ari S, Bergman H, Soreq H. Adaptive acetylcholinesterase splicing patterns attenuate 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Eur J Neurosci (2006) 23(11):2915–2210.1111/j.1460-9568.2006.04812.x
    1. Kuan WL, Zhao JW, Barker RA. The role of anxiety in the development of levodopa-induced dyskinesias in an animal model of Parkinson’s disease, and the effect of chronic treatment with the selective serotonin reuptake inhibitor citalopram. Psychopharmacology (2008) 197(2):279–9310.1007/s00213-007-1030-6
    1. Daniel JS, Govindan JP, Kamath C, D’souza C, Adlan MA, Premawardhana LD. Newer dopaminergic agents cause minimal endocrine effects in idiopathic Parkinson’s disease. Clin Med Insights Endocrinol Diabetes (2014) 7:13–7.10.4137/CMED.S14902

Source: PubMed

3
订阅