Determinants of Low Bone Turnover in Type 2 Diabetes-the Role of PTH

Janina Vavanikunnel, Lilian Sewing, Maria Triantafyllidou, Anna Steighardt, Sandra Baumann, Andrea Egger, Leticia Grize, Barbara Felix, Marius Kraenzlin, Christoph Henzen, Christian Meier, Janina Vavanikunnel, Lilian Sewing, Maria Triantafyllidou, Anna Steighardt, Sandra Baumann, Andrea Egger, Leticia Grize, Barbara Felix, Marius Kraenzlin, Christoph Henzen, Christian Meier

Abstract

Determinants of low bone turnover in type 2 diabetes (T2DM) are poorly understood. To investigate the relationship between markers of bone turnover, glycaemic control, disease duration and calciotropic hormones in T2DM we assessed baseline biochemical data from the DiabOS Study, a prospective multicenter observational cohort study. In a cross-sectional study-design data from 110 postmenopausal women and men aged 50-75 years diagnosed with T2DM for at least 3 years and 92 non-diabetic controls were evaluated. Biochemical markers of bone formation (N-terminal propeptide of type I procollagen [PINP]), bone-specific alkaline phosphatase [BAP]) and resorption (C-terminal cross-linking telopeptide of type I collagen [CTX]), measures of calcium homeostasis (intact parathormone [iPTH], 25-Hydroxyvitamin D, calcium, magnesium) and glycaemic control were assessed. After adjustment for age, gender and body mass index (BMI), patients with T2DM had lower serum levels of PINP (p < 0.001), CTX (p < 0.001), iPTH (p = 0.03) and magnesium (p < 0.001) compared to controls. Serum calcium, creatinine, 25-Hydroxyvitamin D and sclerostin did not differ between both groups. In multivariate linear regression analyses only serum iPTH remained an independent determinant of bone turnover markers in T2DM (PINP: p = 0.02; CTX: p < 0.001 and BAP: p < 0.01), whereas glycated haemoglobin (HbA1c), disease duration, age and BMI were not associated with bone turnover. In conclusion low bone turnover in T2DM is associated with low iPTH. The underlying mechanism remains to be elucidated.

Keywords: Bone turnover; Diabetes; Hypoparathyroidism.

Conflict of interest statement

Janina Vavanikunnel, Lilian Sewing, Maria Triantafyllidou, Anna Steighardt, Sandra Baumann, Andrea Egger, Leticia Grize, Barbara Felix, Marius Kraenzlin, Christoph Henzen, Christian Meier authors state that they have no conflicts of interest with respect to the submitted manuscript.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Distribution of serum PINP and CTX levels in T2DM (n = 110) and non-diabetic controls (Co) (n = 88)
Fig. 2
Fig. 2
Distribution of serum intact PTH levels in T2DM (n = 108) and non-diabetic controls (n = 88)
Fig. 3
Fig. 3
Distribution of serum magnesium levels in T2DM (n = 108) and non-diabetic controls (n = 89)

References

    1. Shu A, Yin M, Stein E, et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int. 2012;23(2):635–641.
    1. Krakauer JC, Mckenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes. 1995;44(7):775–782.
    1. Manavalan J, Cremers S, Dempster D, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(9):3240–3250.
    1. Dobnig H, Piswanger-Sölkner JC, Roth M, et al. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab. 2006;91(9):3355–3363.
    1. Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(1):45–49.
    1. Farr JN, Drake MT, Amin S, Melton LJ, III, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787–795.
    1. Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus—a systematic review. Bone. 2016;82:69–78.
    1. Starup-Linde J, Eriksen S, Lykkeboe S, Handberg A, Vestergaard P. Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int. 2014;25(6):1697–1708.
    1. Yamamoto M, Yamauchi M, Sugimoto T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98(10):4030–4037.
    1. Ardawi M-SM, Akhbar DH, AlShaikh A, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56(2):355–362.
    1. Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover–a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137–R157.
    1. Grontved A, Rimm EB, Willett WC, Andersen LB, Hu FB. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch Intern Med. 2012;172(17):1306–1312. doi: 10.1001/archinternmed.2012.3138.
    1. García-Martín A, Rozas-Moreno P, Reyes-García R, et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(1):234–241.
    1. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292–1299.
    1. Bonds DE, Larson JC, Schwartz AV, et al. Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinol Metab. 2006;91(9):3404–3410. doi: 10.1210/jc.2006-0614.
    1. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13(4):208.
    1. Schwartz AV, Hillier TA, Sellmeyer DE, et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care. 2002;25(10):1749–1754.
    1. Rubin MR, Patsch JM. Assessment of bone turnover and bone quality in type 2 diabetic bone disease: current concepts and future directions. Bone research. 2016;4(1):1–9.
    1. Eller-Vainicher C, Cairoli E, Grassi G, et al. Pathophysiology and management of type 2 diabetes mellitus bone fragility. J Diabet Res. 2020 doi: 10.1155/2020/7608964.
    1. Napoli N, Conte C, Eastell R, et al. Bone turnover markers do not predict fracture risk in type 2 diabetes. J Bone Miner Res. 2020;35(12):2363–2371.
    1. Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T. Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(4):1277–1284.
    1. Reyes-García R, Rozas-Moreno P, López-Gallardo G, et al. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol. 2013;50(1):47–52.
    1. McNair P, Christensen M, Madsbad S, Christiansen C, Transbøl I. Hypoparathyroidism in diabetes mellitus. Eur J Endocrinol. 1981;96(1):81–86.
    1. Kostov K. Effects of magnesium deficiency on mechanisms of insulin resistance in Type 2 diabetes: focusing on the processes of insulin secretion and signaling. Int J Mol Sci. 2019;20(6):1351.
    1. Barbagallo M, Dominguez LJ. Magnesium and type 2 diabetes. World J Diabet. 2015;6(10):1152.
    1. Wittrant Y, Gorin Y, Woodruff K, et al. High d (+) glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone. 2008;42(6):1122–1130.
    1. Starup-Linde J, Lykkeboe S, Gregersen S, et al. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. 2016;83:149–155.
    1. Adami S. Bone health in diabetes: considerations for clinical management. Curr Med Res Opin. 2009;25(5):1057–1072.
    1. Gennari L, Merlotti D, Valenti R, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol. 2012;97(5):1737–1744.
    1. D'Erasmo E, Pisani D, Ragno A, Raejntroph N, Vecci E, Acca M. Calcium homeostasis during oral glucose load in healthy women. Horm Metab Res. 1999;31(04):271–273.
    1. Thalassinos N, Hadjiyanni P, Tzanela M, Alevizaki C, Philokiprou D. Calcium metabolism in diabetes mellitus: effect of improved blood glucose control. Diabet Med. 1993;10(4):341–344.
    1. Payne R. Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem. 1998;35(2):201–206.
    1. Wein MN. Parathyroid hormone signaling in osteocytes. JBMR plus. 2018;2(1):22–30.
    1. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Investig. 1999;104(4):439–446.
    1. Fan Y, Hanai J-i, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 2017;25(3):661–672.
    1. Balani DH, Ono N, Kronenberg HM. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J Clin Investig. 2017;127(9):3327–3338.
    1. Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–2022.
    1. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179.
    1. Brunkow ME, Gardner JC, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot–containing protein. American J Human Genet. 2001;68(3):577–589.
    1. Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab. 2010;95(4):1991–1997.
    1. Ardawi MSM, Al-Kadi HA, Rouzi AA, Qari MH. Determinants of serum sclerostin in healthy pre-and postmenopausal women. J Bone Miner Res. 2011;26(12):2812–2822.
    1. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37(2):148–158.
    1. Okazaki R, Totsuka Y, Hamano K, et al. Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab. 1997;82(9):2915–2920.
    1. Kurstjens S, de Baaij JH, Bouras H, Bindels RJ, Tack CJ, Hoenderop JG. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2017;176(1):11–19.
    1. Kurstjens S, Bouras H, Overmars-Bos C, et al. Diabetes-induced hypomagnesemia is not modulated by metformin treatment in mice. Sci Rep. 2019;9(1):1–9.
    1. Vetter T, Lohse MJ. Magnesium and the parathyroid. Curr Opin Nephrol Hypertens. 2002;11(4):403–410.
    1. Brandi ML, Bilezikian JP, Shoback D, et al. Management of hypoparathyroidism: summary statement and guidelines. J Clin Endocrinol Metab. 2016;101(6):2273–2283.
    1. Rodríguez-Ortiz ME, Canalejo A, Herencia C, et al. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. Nephrol Dial Transplant. 2014;29(2):282–289.
    1. Mather H, Nisbet JA, Burton G, et al. Hypomagnesaemia in diabetes. Clin Chim Acta. 1979;95(2):235–242.
    1. McNAIR P, Christensen MS, Christiansen C, Madsbad S, Transbøl I. Renal hypomagnesaemia in human diabetes mellitus: its relation to glucose homeostasis. European J Clin Investig. 1982;12(1):81–85.

Source: PubMed

3
订阅