Clinical, Histological, and Genetic Features of 25 Patients with Autosomal Dominant Progressive External Ophthalmoplegia (ad-PEO)/PEO-Plus Due to TWNK Mutations

Laura Bermejo-Guerrero, Carlos Pablo de Fuenmayor-Fernández de la Hoz, Pablo Serrano-Lorenzo, Alberto Blázquez-Encinar, Gerardo Gutiérrez-Gutiérrez, Laura Martínez-Vicente, Lucía Galán-Dávila, Jorge García-García, Joaquín Arenas, Nuria Muelas, Aurelio Hernández-Laín, Cristina Domínguez-González, Miguel A Martín, Laura Bermejo-Guerrero, Carlos Pablo de Fuenmayor-Fernández de la Hoz, Pablo Serrano-Lorenzo, Alberto Blázquez-Encinar, Gerardo Gutiérrez-Gutiérrez, Laura Martínez-Vicente, Lucía Galán-Dávila, Jorge García-García, Joaquín Arenas, Nuria Muelas, Aurelio Hernández-Laín, Cristina Domínguez-González, Miguel A Martín

Abstract

Autosomal dominant mutations in the TWNK gene, which encodes a mitochondrial DNA helicase, cause adult-onset progressive external ophthalmoplegia (PEO) and PEO-plus presentations. In this retrospective observational study, we describe clinical and complementary data from 25 PEO patients with mutations in TWNK recruited from the Hospital 12 de Octubre Mitochondrial Disorders Laboratory Database. The mean ages of onset and diagnosis were 43 and 63 years, respectively. Family history was positive in 22 patients. Ptosis and PEO (92% and 80%) were the most common findings. Weakness was present in 48%, affecting proximal limbs, neck, and bulbar muscles. Exercise intolerance was present in 28%. Less frequent manifestations were cardiac (24%) and respiratory (4%) involvement, neuropathy (8%), ataxia (4%), and parkinsonism (4%). Only 28% had mild hyperCKemia. All 19 available muscle biopsies showed signs of mitochondrial dysfunction. Ten different TWNK mutations were identified, with c.1361T>G (p.Val454Gly) and c.1070G>C (p.Arg357Pro) being the most common. Before definitive genetic confirmation, 56% of patients were misdiagnosed (36% with myasthenia, 20% with oculopharyngeal muscle dystrophy). Accurate differential diagnosis and early confirmation with appropriately chosen complementary studies allow genetic counseling and the avoidance of unnecessary treatments. Thus, mitochondrial myopathies must be considered in PEO/PEO-plus presentations, and particularly, TWNK is an important cause when positive family history is present.

Keywords: TWNK gene; mitochondrial dysfunction; mtDNA maintenance defects; progressive external ophthalmoplegia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Clinical findings of the 25 patients in our series. Each bar represents the number of patients presenting a specific clinical feature. PEO: progressive external ophthalmoplegia.
Figure 2
Figure 2
Phenotypic features depending on the affected protein domain. TWNK protein representation showing the distribution of the mutations identified in our cohort along the domains of the protein and the number of patients presenting PEO (blue) or PEO-plus (orange) phenotype for each variant. PEO: progressive external ophthalmoplegia. MTS: mitochondrial targeting sequence. Numbers on the TWNK protein denote the aminoacidic residue delimiting the domains.
Figure 3
Figure 3
Proposed algorithm for differential diagnosis. Abbreviations: LR-PCR: long-range Polymerase Chain Reaction, NGS: next generation sequencing, RNS: repetitive nerve stimulation, SB: southern blot, SFEMG: single-fiber electromyography.

References

    1. El-Hattab A.W., Craigen W.J., Scaglia F. Mitochondrial DNA Maintenance Defects. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017;1863:1539–1555. doi: 10.1016/j.bbadis.2017.02.017.
    1. Peter B., Falkenberg M. TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes. 2020;11:408. doi: 10.3390/genes11040408.
    1. Van Hove J.L.K., Cunningham V., Rice C., Ringel S.P., Zhang Q., Chou P.-C., Truong C.K., Wong L.-J.C. Finding Twinkle in the Eyes of a 71-Year-Old Lady: A Case Report and Review of the Genotypic and Phenotypic Spectrum of TWINKLE-Related Dominant Disease. Am. J. Med. Genet. 2009;149A:861–867. doi: 10.1002/ajmg.a.32731.
    1. Fratter C., Gorman G.S., Stewart J.D., Buddles M., Smith C., Evans J., Seller A., Poulton J., Roberts M., Hanna M.G., et al. The Clinical, Histochemical, and Molecular Spectrum of PEO1 (Twinkle)-Linked AdPEO. Neurology. 2010;74:1619–1626. doi: 10.1212/WNL.0b013e3181df099f.
    1. Martin-Negrier M.-L., Sole G., Jardel C., Vital C., Ferrer X., Vital A. TWINKLE Gene Mutation: Report of a French Family with an Autosomal Dominant Progressive External Ophthalmoplegia and Literature Review: Twinkle Gene Mutation. Eur. J. Neurol. 2011;18:436–441. doi: 10.1111/j.1468-1331.2010.03171.x.
    1. Rodríguez-López C., García-Cárdaba L.M., Blázquez A., Serrano-Lorenzo P., Gutiérrez-Gutiérrez G., San Millán-Tejado B., Muelas N., Hernández-Laín A., Vílchez J.J., Gutiérrez-Rivas E., et al. Clinical, Pathological and Genetic Spectrum in 89 Cases of Mitochondrial Progressive External Ophthalmoplegia. J. Med. Genet. 2020;57:643–646. doi: 10.1136/jmedgenet-2019-106649.
    1. Rivera H., Blázquez A., Carretero J., Alvarez-Cermeño J.C., Campos Y., Cabello A., Gonzalez-Vioque E., Borstein B., Garesse R., Arenas J., et al. Mild Ocular Myopathy Associated with a Novel Mutation in Mitochondrial Twinkle Helicase. Neuromuscul. Disord. 2007;17:677–680. doi: 10.1016/j.nmd.2007.05.006.
    1. Clarke L., Fairley S., Zheng-Bradley X., Streeter I., Perry E., Lowy E., Tassé A.-M., Flicek P. The International Genome Sample Resource (IGSR): A Worldwide Collection of Genome Variation Incorporating the 1000 Genomes Project Data. Nucleic Acids Res. 2017;45:D854–D859. doi: 10.1093/nar/gkw829.
    1. Exome Variant Server. [(accessed on 28 July 2021)]. Available online:
    1. Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Genome Aggregation Database Consortium et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7.
    1. Peña-Chilet M., Roldán G., Perez-Florido J., Ortuño F.M., Carmona R., Aquino V., Lopez-Lopez D., Loucera C., Fernandez-Rueda J.L., Gallego A., et al. CSVS, a Crowdsourcing Database of the Spanish Population Genetic Variability. Nucleic Acids Res. 2021;49:D1130–D1137. doi: 10.1093/nar/gkaa794.
    1. Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W., et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Res. 2018;46:D1062–D1067. doi: 10.1093/nar/gkx1153.
    1. Sim N.-L., Kumar P., Hu J., Henikoff S., Schneider G., Ng P.C. SIFT Web Server: Predicting Effects of Amino Acid Substitutions on Proteins. Nucleic Acids Res. 2012;40:W452–W457. doi: 10.1093/nar/gks539.
    1. Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248.
    1. Schwarz J.M., Cooper D.N., Schuelke M., Seelow D. MutationTaster2: Mutation Prediction for the Deep-Sequencing Age. Nat. Methods. 2014;11:361–362. doi: 10.1038/nmeth.2890.
    1. Jagadeesh K.A., Wenger A.M., Berger M.J., Guturu H., Stenson P.D., Cooper D.N., Bernstein J.A., Bejerano G. M-CAP Eliminates a Majority of Variants of Uncertain Significance in Clinical Exomes at High Sensitivity. Nat. Genet. 2016;48:1581–1586. doi: 10.1038/ng.3703.
    1. Choi Y., Chan A.P. PROVEAN Web Server: A Tool to Predict the Functional Effect of Amino Acid Substitutions and Indels. Bioinformatics. 2015;31:2745–2747. doi: 10.1093/bioinformatics/btv195.
    1. Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., Shendure J. A General Framework for Estimating the Relative Pathogenicity of Human Genetic Variants. Nat. Genet. 2014;46:310–315. doi: 10.1038/ng.2892.
    1. Cooper G.M., Stone E.A., Asimenos G., NISC Comparative Sequencing Program. Green E.D., Batzoglou S., Sidow A. Distribution and Intensity of Constraint in Mammalian Genomic Sequence. Genome Res. 2005;15:901–913. doi: 10.1101/gr.3577405.
    1. Hubisz M.J., Pollard K.S., Siepel A. PHAST and RPHAST: Phylogenetic Analysis with Space/Time Models. Brief. Bioinform. 2011;12:41–51. doi: 10.1093/bib/bbq072.
    1. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., ACMG Laboratory Quality Assurance Committee et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–423. doi: 10.1038/gim.2015.30.
    1. McClelland C., Manousakis G., Lee M.S. Progressive External Ophthalmoplegia. Curr. Neurol. Neurosci. Rep. 2016;16:53. doi: 10.1007/s11910-016-0652-7.
    1. Orsucci D., Angelini C., Bertini E., Carelli V., Comi G.P., Federico A., Minetti C., Moggio M., Mongini T., Santorelli F.M., et al. Revisiting Mitochondrial Ocular Myopathies: A Study from the Italian Network. J. Neurol. 2017;264:1777–1784. doi: 10.1007/s00415-017-8567-z.
    1. Virgilio R., Ronchi D., Hadjigeorgiou G.M., Bordoni A., Saladino F., Moggio M., Adobbati L., Kafetsouli D., Tsironi E., Previtali S., et al. Novel Twinkle (PEO1) Gene Mutations in Mendelian Progressive External Ophthalmoplegia. J. Neurol. 2008;255:1384–1391. doi: 10.1007/s00415-008-0926-3.
    1. Garone C., Taylor R.W., Nascimento A., Poulton J., Fratter C., Domínguez-González C., Evans J.C., Loos M., Isohanni P., Suomalainen A., et al. Retrospective Natural History of Thymidine Kinase 2 Deficiency. J. Med. Genet. 2018;55:515–521. doi: 10.1136/jmedgenet-2017-105012.
    1. Cohen B.H. Mitochondrial and Metabolic Myopathies. Contin. Lifelong Learn. Neurol. 2019;25:1732–1766. doi: 10.1212/CON.0000000000000805.
    1. Domínguez-González C., Hernández-Laín A., Rivas E., Hernández-Voth A., Sayas Catalán J., Fernández-Torrón R., Fuiza-Luces C., García García J., Morís G., Olivé M., et al. Late-Onset Thymidine Kinase 2 Deficiency: A Review of 18 Cases. Orphanet J. Rare Dis. 2019;14:100. doi: 10.1186/s13023-019-1071-z.
    1. Davis R.L., Liang C., Sue C.M. A Comparison of Current Serum Biomarkers as Diagnostic Indicators of Mitochondrial Diseases. Neurology. 2016;86:2010–2015. doi: 10.1212/WNL.0000000000002705.
    1. Poulsen N.S., Madsen K.L., Hornsyld T.M., Eisum A.-S.V., Fornander F., Buch A.E., Stemmerik M.G., Ruiz-Ruiz C., Krag T.O., Vissing J. Growth and Differentiation Factor 15 as a Biomarker for Mitochondrial Myopathy. Mitochondrion. 2020;50:35–41. doi: 10.1016/j.mito.2019.10.005.
    1. Peñas A., Fernández-De la Torre M., Laine-Menéndez S., Lora D., Illescas M., García-Bartolomé A., Morales-Conejo M., Arenas J., Martín M.A., Morán M., et al. Plasma Gelsolin Reinforces the Diagnostic Value of FGF-21 and GDF-15 for Mitochondrial Disorders. Int. J. Mol. Sci. 2021;22:6396. doi: 10.3390/ijms22126396.
    1. Braz L.P., Ng Y.S., Gorman G.S., Schaefer A.M., McFarland R., Taylor R.W., Turnbull D.M., Whittaker R.G. Neuromuscular Junction Abnormalities in Mitochondrial Disease: An Observational Cohort Study. Neurol. Clin. Pract. 2021;11:97–104. doi: 10.1212/CPJ.0000000000000795.
    1. Engel A.G., Shen X.-M., Selcen D., Sine S.M. Congenital Myasthenic Syndromes: Pathogenesis, Diagnosis, and Treatment. Lancet Neurol. 2015;14:420–434. doi: 10.1016/S1474-4422(14)70201-7.
    1. Ciafaloni E. Myasthenia Gravis and Congenital Myasthenic Syndromes. Contin. Lifelong Learn. Neurol. 2019;25:1767–1784. doi: 10.1212/CON.0000000000000800.
    1. Ostos F., Alcantara Miranda P., Hernández-Laín A., Domínguez-González C. Congenital Ophthalmoplegia and Late-Onset Limb Weakness Caused by MUSK Mutations. J. Clin. Neuromuscul. Dis. 2020;21:222–224. doi: 10.1097/CND.0000000000000277.
    1. Brais B. Handbook of Clinical Neurology. Volume 101. Elsevier; Amsterdam, The Netherlands: 2011. Oculopharyngeal Muscular Dystrophy; pp. 181–192.
    1. Wong K.T., Dick D., Anderson J.R. Mitochondrial Abnormalities in Oculopharyngeal Muscular Dystrophy. Neuromuscul. Disord. 1996;6:163–166. doi: 10.1016/0960-8966(95)00039-9.
    1. Alonso-Jimenez A., Kroon R.H.M.J.M., Alejaldre-Monforte A., Nuñez-Peralta C., Horlings C.G.C., van Engelen B.G.M., Olivé M., González L., Verges-Gil E., Paradas C., et al. Muscle MRI in a Large Cohort of Patients with Oculopharyngeal Muscular Dystrophy. J. Neurol. Neurosurg. Psychiatry. 2019;90:576–585. doi: 10.1136/jnnp-2018-319578.
    1. Pasnoor M., Dimachkie M.M., Farmakidis C., Barohn R.J. Diagnosis of Myasthenia Gravis. Neurol. Clin. 2018;36:261–274. doi: 10.1016/j.ncl.2018.01.010.

Source: PubMed

3
订阅