A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy

Xueli Yuan, Jesus Paez-Cortez, Isabela Schmitt-Knosalla, Francesca D'Addio, Bechara Mfarrej, Michela Donnarumma, Antje Habicht, Michael R Clarkson, John Iacomini, Laurie H Glimcher, Mohamed H Sayegh, M Javeed Ansari, Xueli Yuan, Jesus Paez-Cortez, Isabela Schmitt-Knosalla, Francesca D'Addio, Bechara Mfarrej, Michela Donnarumma, Antje Habicht, Michael R Clarkson, John Iacomini, Laurie H Glimcher, Mohamed H Sayegh, M Javeed Ansari

Abstract

T-bet plays a crucial role in Th1 development. We investigated the role of T-bet in the development of allograft rejection in an established MHC class II-mismatched (bm12 into B6) model of chronic allograft vasculopathy (CAV). Intriguingly, and in contrast to IFN-gamma(-/-) mice that are protected from CAV, T-bet(-/-) recipients develop markedly accelerated allograft rejection accompanied by early severe vascular inflammation and vasculopathy, and infiltration by predominantly IL-17-producing CD4 T cells. Concurrently, T-bet(-/-) mice exhibit a T helper type 1 (Th1)-deficient environment characterized by profound IFN-gamma deficiency, a Th2 switch characterized by increased production of interleukin (IL) 4, IL-5, IL-10, and IL-13 cytokines, as well as increased production of the proinflammatory cytokines IL-6, IL-12p40, and IL-17. Neutralization of IL-17 inhibits accelerated allograft rejection and vasculopathy in T-bet(-/-) mice. Interestingly, CD4 but not CD8 T cell deficiency in T-bet(-/-) mice affords dramatic protection from vasculopathy and facilitates long-term graft acceptance. This is the first study establishing that in the absence of Th1-mediated alloimmune responses, CD4 Th17 cells mediate an aggressive proinflammatory response culminating in severe accelerated allograft rejection and vasculopathy. These results have important implications for the development of novel therapies to target this intractable problem in clinical solid organ transplantation.

Figures

Figure 1.
Figure 1.
T-bet deficiency accelerates cardiac allograft rejection characterized by severe vasculopathic changes and PMN infiltration. (A) MHC class II–mismatched cardiac allograft survival (bm12 into C57BL/6) in WT, T-bet−/−, IFN-γ−/−, and T-bet/Ig DKO recipients (n = 8 in WT, and n = 6 in T-bet−/−, IFN-γ−/−, and T-bet/Ig DKO groups). Survival data are presented as a Kaplan-Meier plot. (B) Pathology (top, H&E staining; bottom, elastin staining) of bm12 cardiac allografts from WT, T-bet−/−, and IFN-γ−/− recipients at 2 and 8 wk after transplantation. Note the severe vascular inflammation in the T-bet−/− recipient and the normal vascular integrity in the IFN-γ−/− recipient in contrast to that of the WT recipient even at 8 wk after engraftment. Bars, 20 μm. (C) Pathology (H&E staining) of bm12 cardiac allografts from WT, T-bet−/−, and IFN-γ−/− recipients at 2 wk after transplantation (top, low magnification; bottom, high magnification) showing severe PMN infiltration (both neutrophils and eosinophils) in the T-bet−/− recipients and minimal PMN (predominantly eosinophilic) infiltration in IFN-γ−/− recipients, in contrast to modest mononuclear infiltration in WT recipients. Insets show infiltrating cell morphology. Histology results presented are from one experiment and are representative of three independent experiments. Bars, 20 μm.
Figure 2.
Figure 2.
IL-17–expressing graft-infiltrating lymphocytes in T-bet−/− recipients. Immunofluorescence staining and confocal microscopy of heart allografts harvested 2 wk after transplantation for IL-17 expression by CD4 and CD8 T cells. IL-17 expression by most of the CD4 (top) and some of the CD8 (bottom) graft-infiltrating T cells in the T-bet−/− recipients is seen in contrast to WT recipients (not depicted), where only a few of the infiltrating T cells express IL-17 and no IL-17–expressing cells were seen in grafts from IFN-γ−/− recipients (not depicted). Results presented are from one experiment and are representative of three independent experiments. Bars, 20 μm.
Figure 3.
Figure 3.
T-bet deficiency promotes CD4 and CD8 T cell effector/memory differentiation and proliferation in MHC class II–mismatched cardiac allograft recipients. (A) FACS analysis of lymphocytes in the peripheral blood of WT, IFN-γ−/−, and T-bet−/− recipients bearing a CD44hiCD62Llow effector/memory phenotype gated on either CD4 (top) or CD8 (bottom) T cell populations. Percentages of cells are shown. (B) CD25+/Foxp3+ regulatory CD4 T cells in the MHC class II–mismatched cardiac allograft recipients. Gates were set on the CD4+ population, and percentages of cells are shown. Bar graphs show means ± SD. All results are representative of at least three different sets of experiments.
Figure 4.
Figure 4.
Up-regulation of Th2 and Th17 proinflammatory cytokine production by T-bet−/− allograft recipients of bm12 hearts. Th1, Th2, and Th17 proinflammatory cytokine production by the splenocytes of WT, IFN-γ−/−, and T-bet−/− recipients of bm12 heart grafts assessed by the Luminex assay. IL-12 data are presented separately because of the need to use a different scale. Results presented are means ± SD and are representative of at least three independent experiments.
Figure 5.
Figure 5.
T-bet−/− CD4 T cells produce proinflammatory cytokines and mediate accelerated cardiac allograft rejection in the MHC class II–mismatched cardiac allograft model of CAV. (A) Survival of allogeneic bm12 cardiac graft in CD4- or CD8-depleted (left) and CD4/T-bet or CD8/T-bet DKO (right) recipients (n = 4 in each group). Survival data are presented as Kaplan-Meier plots. (B) Pathology (elastin staining) of bm12 cardiac allografts from CD4- or CD8-depleted T-bet−/− recipients at 8 and 3 wk, respectively, after transplantation. Note the significant vasculopathy in the CD8-depleted T-bet−/− recipient and, in contrast, the relatively normal vascular integrity in the CD4-depleted T-bet−/− recipient even at 8 wk after engraftment. Bars, 20 μm. (C) IL-6 and IL-17 proinflammatory cytokine production by splenocytes of T-bet−/−, CD4/T-bet DKO, and CD8/T-bet DKO recipients of bm12 heart grafts assessed by the Luminex assay. Bar graphs show means ± SD. Results presented are from one experiment and are representative of three independent experiments.
Figure 6.
Figure 6.
IL-17 neutralization inhibits accelerated cardiac allograft rejection in a model of CAV in T-bet−/− mice. (A) MHC class II–mismatched cardiac allograft survival (bm12 into C57BL/6) in T-bet−/− recipients treated with anti–IL-17 mAb (n = 4) or control IgG (n = 4). Survival data are presented as a Kaplan-Meier plot. (B) Th1, Th2, and Th17 proinflammatory cytokine production, assessed by the Luminex assay at days 14 or 40 after transplantation, by the splenocytes of T-bet−/− recipients of bm12 heart grafts treated with control Ig or anti–IL-17 mAb. IL-12 data are presented separately because of the need to use a different scale. Results presented are means ± SD and are representative of three independent experiments. (C) Pathology of bm12 cardiac allografts from anti–IL-17 mAb–treated T-bet−/− recipients at 14 d after transplantation (left and middle, H&E staining; inset, infiltrating cell morphology), showing a decrease in PMN infiltration (particularly neutrophils), and at 40 d after transplantation (right, elastin staining), showing minimal CAV. Bars, 20 μm.

References

    1. Abbas, A.K., K.M. Murphy, and A. Sher. 1996. Functional diversity of helper T lymphocytes. Nature. 383:787–793.
    1. Mosmann, T.R., and S. Sad. 1996. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today. 17:138–146.
    1. Szabo, S.J., B.M. Sullivan, C. Stemmann, A.R. Satoskar, B.P. Sleckman, and L.H. Glimcher. 2002. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science. 295:338–342.
    1. Waaga, A.M., M. Gasser, J.E. Kist-van Holthe, N. Najafian, A. Muller, J.P. Vella, K.L. Womer, A. Chandraker, S.J. Khoury, and M.H. Sayegh. 2001. Regulatory functions of self-restricted MHC class II allopeptide-specific Th2 clones in vivo. J. Clin. Invest. 107:909–916.
    1. Saleem, S., B.T. Konieczny, R.P. Lowry, F.K. Baddoura, and F.G. Lakkis. 1996. Acute rejection of vascularized heart allografts in the absence of IFNgamma. Transplantation. 62:1908–1911.
    1. Konieczny, B.T., Z. Dai, E.T. Elwood, S. Saleem, P.S. Linsley, F.K. Baddoura, C.P. Larsen, T.C. Pearson, and F.G. Lakkis. 1998. IFN-gamma is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways. J. Immunol. 160:2059–2064.
    1. Zhou, P., G.L. Szot, Z. Guo, O. Kim, G. He, J. Wang, M.J. Grusby, K.A. Newell, J.R. Thistlethwaite, J.A. Bluestone, and M.L. Alegre. 2000. Role of STAT4 and STAT6 signaling in allograft rejection and CTLA4-Ig-mediated tolerance. J. Immunol. 165:5580–5587.
    1. Fanslow, W.C., K.N. Clifford, L.S. Park, A.S. Rubin, R.F. Voice, M.P. Beckmann, and M.B. Widmer. 1991. Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. J. Immunol. 147:535–540.
    1. Nickerson, P., X.X. Zheng, J. Steiger, A.W. Steele, W. Steurer, P. Roy-Chaudhury, W. Muller, and T.B. Strom. 1996. Prolonged islet allograft acceptance in the absence of interleukin 4 expression. Transpl. Immunol. 4:81–85.
    1. Zhai, Y., R.M. Ghobrial, R.W. Busuttil, and J.W. Kupiec-Weglinski. 1999. Th1 and Th2 cytokines in organ transplantation: paradigm lost? Crit. Rev. Immunol. 19:155–172.
    1. Nagano, H., R.N. Mitchell, M.K. Taylor, S. Hasegawa, N.L. Tilney, and P. Libby. 1997. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J. Clin. Invest. 100:550–557.
    1. Koglin, J., T. Glysing-Jensen, S. Gadiraju, and M.E. Russell. 2000. Attenuated cardiac allograft vasculopathy in mice with targeted deletion of the transcription factor STAT4. Circulation. 101:1034–1039.
    1. Bettelli, E., B. Sullivan, S.J. Szabo, R.A. Sobel, L.H. Glimcher, and V.K. Kuchroo. 2004. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200:79–87.
    1. Juedes, A.E., E. Rodrigo, L. Togher, L.H. Glimcher, and M.G. von Herrath. 2004. T-bet controls autoaggressive CD8 lymphocyte responses in type 1 diabetes. J. Exp. Med. 199:1153–1162.
    1. Gocke, A.R., P.D. Cravens, L.H. Ben, R.Z. Hussain, S.C. Northrop, M.K. Racke, and A.E. Lovett-Racke. 2007. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J. Immunol. 178:1341–1348.
    1. Sayegh, M.H., Z. Wu, W.W. Hancock, P.B. Langmuir, M. Mata, S. Sandner, K. Kishimoto, M. Sho, E. Palmer, R.N. Mitchell, and L.A. Turka. 2003. Allograft rejection in a new allospecific CD4+ TCR transgenic mouse. Am. J. Transplant. 3:381–389.
    1. Yang, J., J. Popoola, S. Khandwala, N. Vadivel, V. Vanguri, X. Yuan, S. Dada, I. Guleria, C. Tian, M.J. Ansari, et al. 2008. Critical role of donor tissue expression of programmed death ligand-1 in regulating cardiac allograft rejection and vasculopathy. Circulation. 117:660–669.
    1. Park, H., Z. Li, X.O. Yang, S.H. Chang, R. Nurieva, Y.H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian, and C. Dong. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6:1133–1141.
    1. Joshi, N.S., W. Cui, A. Chandele, H.K. Lee, D.R. Urso, J. Hagman, L. Gapin, and S.M. Kaech. 2007. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity. 27:281–295.
    1. Bettelli, E., Y. Carrier, W. Gao, T. Korn, T.B. Strom, M. Oukka, H.L. Weiner, and V.K. Kuchroo. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441:235–238.
    1. Lohr, J., B. Knoechel, J.J. Wang, A.V. Villarino, and A.K. Abbas. 2006. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J. Exp. Med. 203:2785–2791.
    1. Harrington, L.E., R.D. Hatton, P.R. Mangan, H. Turner, T.L. Murphy, K.M. Murphy, and C.T. Weaver. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6:1123–1132.
    1. Mathur, A.N., H.C. Chang, D.G. Zisoulis, R. Kapur, M.L. Belladonna, G.S. Kansas, and M.H. Kaplan. 2006. T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood. 108:1595–1601.
    1. Rangachari, M., N. Mauermann, R.R. Marty, S. Dirnhofer, M.O. Kurrer, V. Komnenovic, J.M. Penninger, and U. Eriksson. 2006. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J. Exp. Med. 203:2009–2019.
    1. Cua, D.J., J. Sherlock, Y. Chen, C.A. Murphy, B. Joyce, B. Seymour, L. Lucian, W. To, S. Kwan, T. Churakova, et al. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 421:744–748.
    1. Fischbein, M.P., J. Yun, H. Laks, Y. Irie, M.C. Fishbein, B. Bonavida, and A. Ardehali. 2002. Role of CD8+ lymphocytes in chronic rejection of transplanted hearts. J. Thorac. Cardiovasc. Surg. 123:803–809.
    1. McGeachy, M.J., and D.J. Cua. 2008. Th17 cell differentiation: the long and winding road. Immunity. 28:445–453.
    1. Liblau, R.S., S.M. Singer, and H.O. McDevitt. 1995. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol. Today. 16:34–38.
    1. Field, E.H., Q. Gao, N.X. Chen, and T.M. Rouse. 1997. Balancing the immune system for tolerance: a case for regulatory CD4 cells. Transplantation. 64:1–7.
    1. Peng, S.L. 2006. The T-box transcription factor T-bet in immunity and autoimmunity. Cell. Mol. Immunol. 3:87–95.
    1. Fairchild, R.L. 2003. The Yin and Yang of IFN-gamma in allograft rejection. Am. J. Transplant. 3:913–914.
    1. Aggarwal, S., N. Ghilardi, M.H. Xie, F.J. de Sauvage, and A.L. Gurney. 2003. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278:1910–1914.
    1. Langrish, C.L., Y. Chen, W.M. Blumenschein, J. Mattson, B. Basham, J.D. Sedgwick, T. McClanahan, R.A. Kastelein, and D.J. Cua. 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201:233–240.
    1. Bettelli, E., M. Oukka, and V.K. Kuchroo. 2007. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8:345–350.
    1. Mattner, F., S. Fischer, S. Guckes, S. Jin, H. Kaulen, E. Schmitt, E. Rude, and T. Germann. 1993. The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer. Eur. J. Immunol. 23:2202–2208.
    1. Shimozato, O., S. Ugai, M. Chiyo, H. Takenobu, H. Nagakawa, A. Wada, K. Kawamura, H. Yamamoto, and M. Tagawa. 2006. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects. Immunology. 117:22–28.
    1. Piccotti, J.R., S.Y. Chan, R.E. Goodman, J. Magram, E.J. Eichwald, and D.K. Bishop. 1996. IL-12 antagonism induces T helper 2 responses, yet exacerbates cardiac allograft rejection. Evidence against a dominant protective role for T helper 2 cytokines in alloimmunity. J. Immunol. 157:1951–1957.
    1. Mikols, C.L., L. Yan, J.Y. Norris, T.D. Russell, A.P. Khalifah, R.R. Hachem, M.M. Chakinala, R.D. Yusen, M. Castro, E. Kuo, et al. 2006. IL-12 p80 is an innate epithelial cell effector that mediates chronic allograft dysfunction. Am. J. Respir. Crit. Care Med. 174:461–470.
    1. Fujiwara, M., K. Hirose, S. Kagami, H. Takatori, H. Wakashin, T. Tamachi, N. Watanabe, Y. Saito, I. Iwamoto, and H. Nakajima. 2007. T-bet inhibits both TH2 cell-mediated eosinophil recruitment and TH17 cell-mediated neutrophil recruitment into the airways. J. Allergy Clin. Immunol. 119:662–670.
    1. Kleinschek, M.A., A.M. Owyang, B. Joyce-Shaikh, C.L. Langrish, Y. Chen, D.M. Gorman, W.M. Blumenschein, T. McClanahan, F. Brombacher, S.D. Hurst, et al. 2007. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med. 204:161–170.
    1. Muller, U., W. Stenzel, G. Kohler, C. Werner, T. Polte, G. Hansen, N. Schutze, R.K. Straubinger, M. Blessing, A.N. McKenzie, et al. 2007. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J. Immunol. 179:5367–5377.
    1. Serada, S., M. Fujimoto, M. Mihara, N. Koike, Y. Ohsugi, S. Nomura, H. Yoshida, T. Nishikawa, F. Terabe, T. Ohkawara, et al. 2008. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA. 105:9041–9046.
    1. Ye, P., F.H. Rodriguez, S. Kanaly, K.L. Stocking, J. Schurr, P. Schwarzenberger, P. Oliver, W. Huang, P. Zhang, J. Zhang, et al. 2001. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194:519–527.
    1. Zhang, Z., M. Zheng, J. Bindas, P. Schwarzenberger, and J.K. Kolls. 2006. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm. Bowel Dis. 12:382–388.
    1. Ouyang, W., J.K. Kolls, and Y. Zheng. 2008. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 28:454–467.
    1. Liang, S.C., A.J. Long, F. Bennett, M.J. Whitters, R. Karim, M. Collins, S.J. Goldman, K. Dunussi-Joannopoulos, C.M. Williams, J.F. Wright, and L.A. Fouser. 2007. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J. Immunol. 179:7791–7799.
    1. Delfs, M.W., Y. Furukawa, R.N. Mitchell, and A.H. Lichtman. 2001. CD8+ T cell subsets TC1 and TC2 cause different histopathologic forms of murine cardiac allograft rejection. Transplantation. 71:606–610.
    1. Yang, X.O., R. Nurieva, G.J. Martinez, H.S. Kang, Y. Chung, B.P. Pappu, B. Shah, S.H. Chang, K.S. Schluns, S.S. Watowich, et al. 2008. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 29:44–56.
    1. Radhakrishnan, S., R. Cabrera, E.L. Schenk, P. Nava-Parada, M.P. Bell, V.P. Van Keulen, R.J. Marler, S.J. Felts, and L.R. Pease. 2008. Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J. Immunol. 181:3137–3147.
    1. Dardalhon, V., T. Korn, V.K. Kuchroo, and A.C. Anderson. 2008. Role of Th1 and Th17 cells in organ-specific autoimmunity. J. Autoimmun. 10.1016/j.jaut.2008.04.017.
    1. Burlingham, W.J., R.B. Love, E. Jankowska-Gan, L.D. Haynes, Q. Xu, J.L. Bobadilla, K.C. Meyer, M.S. Hayney, R.K. Braun, D.S. Greenspan, et al. 2007. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J. Clin. Invest. 117:3498–3506.
    1. Tang, J.L., V.M. Subbotin, M.A. Antonysamy, A.B. Troutt, A.S. Rao, and A.W. Thomson. 2001. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation. 72:348–350.
    1. Nakae, S., Y. Komiyama, A. Nambu, K. Sudo, M. Iwase, I. Homma, K. Sekikawa, M. Asano, and Y. Iwakura. 2002. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 17:375–387.
    1. Tesmer, L.A., S.K. Lundy, S. Sarkar, and D.A. Fox. 2008. Th17 cells in human disease. Immunol. Rev. 223:87–113.
    1. Van Kooten, C., J.G. Boonstra, M.E. Paape, F. Fossiez, J. Banchereau, S. Lebecque, J.A. Bruijn, J.W. De Fijter, L.A. Van Es, and M.R. Daha. 1998. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J. Am. Soc. Nephrol. 9:1526–1534.
    1. Loong, C.C., H.G. Hsieh, W.Y. Lui, A. Chen, and C.Y. Lin. 2002. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J. Pathol. 197:322–332.
    1. Vanaudenaerde, B.M., L.J. Dupont, W.A. Wuyts, E.K. Verbeken, I. Meyts, D.M. Bullens, E. Dilissen, L. Luyts, D.E. Van Raemdonck, and G.M. Verleden. 2006. The role of interleukin-17 during acute rejection after lung transplantation. Eur. Respir. J. 27:779–787.
    1. Antonysamy, M.A., W.C. Fanslow, F. Fu, W. Li, S. Qian, A.B. Troutt, and A.W. Thomson. 1999. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J. Immunol. 162:577–584.
    1. Li, J., E. Simeoni, S. Fleury, J. Dudler, E. Fiorini, L. Kappenberger, L.K. von Segesser, and G. Vassalli. 2006. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur. J. Cardiothorac. Surg. 29:779–783.

Source: PubMed

3
订阅