Antioxidant, antityrosinase and antitumor activity comparison: the potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb.f

Fusheng Jiang, Weiping Li, Yanfen Huang, Yitao Chen, Bo Jin, Nipi Chen, Zhishan Ding, Xinghong Ding, Fusheng Jiang, Weiping Li, Yanfen Huang, Yitao Chen, Bo Jin, Nipi Chen, Zhishan Ding, Xinghong Ding

Abstract

This study was carried out to evaluate the utilization probability of the fibrous root part (FRP) of Bletilla striata, which was usually discarded and harvesting pseudobulb part (PSP). The chemical composition, total phenolic content, DPPH radical scavenging activity, Ferric-reducing antioxidant power and tyrosinase inhibition activity were compared between FRP and PSP. Antioxidant and pro-oxidant effect as well as antitumor effect of the extract of FRP and PSP were analyzed by in vitro cell system as well. Thin layer chromatography and high performance liquid chromatography analysis indicated that the chemical compositions in the two parts were similar, but the content in FRP was much higher than PSP. Meanwhile, the FRP extracts showed higher phenolic content, stronger DPPH scavenging activity, Ferric-reducing antioxidant capacity and tyrosinase inhibition activity. Sub-fraction analysis revealed that the distribution characteristic of phenolic components and other active constituents in FRP and PSP were consistent, and mainly deposited in chloroform and acetoacetate fractions. Especially, the chloroform sub-fraction (sch) of FRP showed extraordinary DPPH scavenging activity and tyrosinase inhibition activity, with IC50 0.848 mg/L and 4.3 mg/L, respectively. Besides, tyrosinase inhibition activity was even stronger than the positive compound arbutin (31.8 mg/L). Moreover, In vitro cell system analysis confirmed that FRP extract exerts comparable activity with PSP, especially, the sub-fraction sch of FRP showed better antioxidant activity at low dosage and stronger per-oxidant activity at high dosage, and both sch of FRP and PSP can dose-dependent induce HepG2 cells apoptosis, which implied tumor therapeutic effect. Considering that an additional 0.3 kg FRP would be obtained when producing 1.0 kg PSP, our work demonstrated that FRP is very potential to be used together with PSP.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. The underground part of a…
Figure 1. The underground part of a three-year-old Bletilla plant.
Red, green and blue arrows indicate pseudobulb, fibrous roots and shoots of Bletilla respectively.
Figure 2. Analysis of the constituents of…
Figure 2. Analysis of the constituents of the PSP and FRP by TLC method.
The plate was air dried and recorded under UV light (panel A), then developed with I2/KI under room temperature (panel B), and 5% H2SO4-ethanol in 110°C for five minutes (panel C) sequentially. The lane 1, 3 and 5 were loaded with the sub-fractions of spe, sch and sac from the FRP; lane 2, 4 and 6 were loaded with the sub-fractions of spe, sch and sac from the PSP. Red arrows indicated the components that are absent in the PSP.
Figure 3. The HPLC results of tubers…
Figure 3. The HPLC results of tubers and fibrous roots of B. striata.
The black and red curve represent for PSP (15 µL injection) and FRP (5 µL injection) 95% ethanol extract, respectively. Peak marked was identified as the same compound both existed in PSP and FRP by UV-VIS spectrum.
Figure 4. The phenolic content in sub-fractions…
Figure 4. The phenolic content in sub-fractions of the PSP and FRP (*, P<0.05, n = 3).
Figure 5. DPPH scavenging activity and Ferric-reducing…
Figure 5. DPPH scavenging activity and Ferric-reducing antioxidant power of the extracts.
The symbol □, ○, Δ in panel A and C represent for 95% ethanol extract of the PSP, 95% ethanolic extract of the FRP and the positive control of gallic acid, respectively; Panel A and B, DPPH scavenging activity; Panel C and D, Ferric-reducing antioxidant power; #, P<0.05; *, P<0.01; n = 3.
Figure 6. Correlation analysis between the DPPH…
Figure 6. Correlation analysis between the DPPH scavenging activity (IC50) and the phenolic content for sub-fractions of the PSP and FRP (P<0.05).
Figure 7. Effect of sub-fractions on intracellular…
Figure 7. Effect of sub-fractions on intracellular ROS levels in HepG2 cell line.
HepG2 cells were stimulated for 1.5 h, intracellular ROS levels were assessed as described in the ‘Materials and Methods’ section. (A) Dose-dependent effect of H2O2 on intracellular ROS levels; (B,C and D) Intracellular ROS levels in cultured HepG2 in the absence (CTRL) or presence of the indicated concentration of (B) spe, (C) sch and (D) sac sub-fractions of both FRP and PSP. (A–D) * Significantly different from the control, P<0.05; n = 3.
Figure 8. Sub-fractions induce HepG2 impairment and…
Figure 8. Sub-fractions induce HepG2 impairment and apoptosis.
HepG2 cells were exposure in different sub-fractions and concentrations for 24h, and then cell viability and apoptosis were assessed as reported in the ‘Materials and Methods’ section. (A) Cell viability, (B) apoptosis and (C) necrosis in presence of the indicated sub-fraction concentration. Data are expressed as percent of control (CTRL). (A–D) * Significantly different from the control, P<0.05; n = 3.
Figure 9. sch-fractions induce HepG2 apoptosis and…
Figure 9. sch-fractions induce HepG2 apoptosis and necrosis.
HepG2 cells were treated in different sub-fractions and concentrations for 24 h, and then cell were stained with Hoechst/PI as mentioned in the ‘Materials and Methods’ section. (A–C) Cells were absence of any treatment; (D–F) Cells were exposure to 6.25 µg/ml sch of FRP; (G–I) Cells were exposure to 50 µg/ml sch of PSP; (J–L) Cells were exposure to 50 µg/ml sch of FRP; magnification:×200.

References

    1. Kong JM, Goh NK, Chia LS, Chia TF (2003) Recent advances in traditional plant drugs and orchids. Acta Pharmacologica Sinica 24: 7–21.
    1. Shi J (2009) Resources and medicinal utilization of Bletilla (orchidaceae). Master Thesis, college of Horticulture and Landscape Architecture, Hainan University, Hainan province.
    1. Gutiérrez RMP (2010) Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. Journal of Medicinal Plants Research 4: 592–638.
    1. Sun DF, Shi JS, Zhang WM, Gu GP, Zhu CL (2006) Study on the extraction of polysaccharides from Blettila striata by the continuous counter-current equipment (in Chinese). Chinese Wild Plant Resources 25: 34–35.
    1. Wang CM, Sun JT, Luo Y, Xue WH, Diao HJ, et al. (2006) A polysaccharide isolated from the medicinal herb Bletilla striata induces endothelial cells proliferation and vascular endothelial growth factor expression in vitro . Biotechnology Letters 28: 539–543.
    1. Luo Y, Diao HJ, Xia SH, Dong L, Chen JN, et al. (2010) Physiologically active polysaccharide hydrogel promotes wound healing. Journal of Biomedical Materials Research Part A 94: 193–204.
    1. Takagi S, Yamaki M, Inoue K (1983) Antimicrobial agents from Bletilla striata . Phytochemistry 22: 1011–1015.
    1. Morita H, Koyama K, Sugimoto Y, Kobayashi J (2005) Antimitotic activity and reversal of breast cancer resistance protein-mediated drug resistance by stilbenoids from Bletilla striata. Bioorganic & Medicinal Chemistry Letters 15: 1051–1054.
    1. Lei TC, Zhu WY, Xia MY, Zhang MH, Fan WX (1999) Studies on the effect of TCM on melanin biosynthesis I. Inhibitory actions of ethanolic extracts of 82 different Chinese crude drugs on tyrosinase activity (in Chinese). Chinese Traditional and Herbal Drugs 30: 336–339.
    1. Mao XL, Chen GY, He Q, Lai B, Huang YY, et al. (2011) Effect of ethanol extracts from 4 Chinese crude drugs on chloasma (in Chinese). Central South Pharmacy 9: 604–607.
    1. Zhu JY (2011) Studies on the characteristic chromatogram of Tripterygium wilfordii by HPLC. Master Thesis, Fujian university of traditional Chinese medicine. Fujian province.
    1. Vidensek N, Lim P, Campbell A, Carlson C (1990) Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. Journal of Natural Products 53: 1609–1610.
    1. Sun F, Wu D, Fu SP, Yu HS, Jin FX (2007) Distribution of saponin in ginseng and wild ginseng (in Chinese). Journal of Dalian Institute of Light Industry 26: 97–100.
    1. Liang QY, Liu HG, Lai MX, Huang HX (2006) Study of determination of lutou and fibrous root of its radix (in Chinese). Journal of guangxi medical university 23: 36–37.
    1. Yang Y, Ai P, Yang LP, Li X (2009) Improving TCL method of Bletilla striata and identifying constituents of the main spots in TLC (in Chinese). Asia pacific traditional medicine 5: 23–25.
    1. Slinkard K, Singleton VL (1977) Total phenol analyses: Automation and Comparison with Manual Methods. American Journal of Enology and Viticulture 28: 49–55.
    1. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, et al. (2007) Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements. Sensors 7: 2080–2095.
    1. Wazir D, Ahmad S, Muse R, Mahmood M, Shukor MY (2011) Antioxidant activities of different parts of Gnetum gnemon L. Journal of Plant Biochemistry and Biotechnology. 20: 234–240.
    1. Maisuthisakul P, Gordon MH (2009) Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chemistry 117: 332–341.
    1. Pasciu V, Posadino AM, Cossu A, Sanna B, Tadolini B, et al. (2010) Akt downregulation by flavin oxidase-induced ROS generation mediates dose-dependent endothelial cell damage elicited by natural antioxidants. Toxicological Sciences. 114: 101–112.
    1. Ding ZS, Jiang FS, Chen NP, Lv GY, Zhu CG (2008) Isolation and identification of an anti-tumor component from leaves of Impatiens balsamina.Molecules. 13: 220–229.
    1. Gan RY, Xu XR, Song FL, Kuang L, Li HB (2010) Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. Journal of Medicinal Plants Research 4: 2438–2444.
    1. Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 74: 2157–2184.
    1. Wojdyło A, Oszmianski J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry 105: 940–949.
    1. Čanadanović-Brunet JM, Ćetković GS, Djilas SM, Tumbas VT, Savatović SS, et al. (2009) Radical scavenging and antimicrobial activity of horsetail (Equisetum arvense L.) extracts. International journal of Food Science and Technology 44: 269–278.
    1. Rui HY, Wu GR, Chen JY, Lu CM (2003) Study on antioxidant activity of neutral polysaccharide from Bletilla Striata (in Chinese). Journal of Nanjing Normal University (naturnal science edition) 26: 94–99.
    1. Kaji H, Inukai Y, Maiguma T, Ono H, Teshima D, et al. (2009) Radical scavenging activity of bisbenzylisoquinoline alkaloids and traditional prophylactics against chemotherapy-induced oral mucositis. Journal of Clinical Pharmacy and Therapeutics 34: 197–205.
    1. Duan XW, Wu GF, Jiang YM (2007) Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules 12: 759–771.
    1. Claus H, Decker H (2006) Bacterial tyrosinases. Systematic and Applied Microbiology 29: 3–14.
    1. Van Gelder CW, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45: 1309–1323.
    1. Ponnazhagan S, Hou L, Kwon BS (1994) Structural organization of the human tyrosinase gene and sequence analysis and characterization of its promoter region. Journal of Investigative Dermatology 102: 744–748.
    1. Martinez MV, Whitaker JR (1995) The biochemistry and control of enzymatic browning. Trends in Food Science & Technology 6: 195–200.
    1. Smit N, Vicanova J, Pavel S (2009) The hunt for natural skin whitening agents. International Journal of Molecular Sciences 10: 5326–5349.
    1. Lin SQ (1994) Studies on the supercritical carbon dioxide extraction of the Chinese herbal medicine and its extract for inhibiton of melanin formation. Master Thesis, National Cheng Kung University, Taiwan.
    1. Zhang H, Cao D, Cui W, Ji M, Qian X, et al. (2010) Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate. Free Radical Biology and Medicine. 49: 2010–2018.

Source: PubMed

3
订阅