Phase 1 study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in Japanese patients with advanced solid tumors

Toshio Shimizu, Takashi Seto, Fumihiko Hirai, Mitsuhiro Takenoyama, Kaname Nosaki, Junji Tsurutani, Hiroyasu Kaneda, Tsutomu Iwasa, Hisato Kawakami, Kazuo Noguchi, Takashi Shimamoto, Kazuhiko Nakagawa, Toshio Shimizu, Takashi Seto, Fumihiko Hirai, Mitsuhiro Takenoyama, Kaname Nosaki, Junji Tsurutani, Hiroyasu Kaneda, Tsutomu Iwasa, Hisato Kawakami, Kazuo Noguchi, Takashi Shimamoto, Kazuhiko Nakagawa

Abstract

Background This phase I study evaluated the safety and tolerability, pharmacokinetics and pharmacodynamics, immunogenicity, and antitumor activity of pembrolizumab in Japanese patients with advanced solid tumors. Methods Following an initial dose and a 28-day rest (cycle 1), pembrolizumab was administered as an intravenous infusion at escalating doses (2 or 10 mg/kg) every 2 weeks (Q2W) until disease progression or unacceptable toxicity. Adverse events (AEs) were assessed using CTCAE v4.0, and tumor response was assessed using both RECIST v1.1 and immune-related response criteria (irRC). Full pharmacokinetic sampling was performed during cycle 1. Results Three patients received pembrolizumab at 2.0 mg/kg and seven at 10 mg/kg. No dose-limiting toxicities were observed during cycle 1. Eighty percent of patients experienced drug-related AEs (mostly grade 1 or 2); the most common drug-related AEs were nausea, malaise, pyrexia, and aspartate aminotransferase/alanine transaminase (AST/ALT) elevations (n = 2 each). No drug-related grade 4 or 5 AEs occurred. Immune-related AEs comprised grade 3 ALT elevation (n = 1), grade 3 AST elevation (n = 1), grade 1 pneumonitis (n = 1), and grade 1 thyroid-stimulating hormone elevation (n = 1). The safety and pharmacokinetic profiles of Japanese patients were similar to those previously reported for Caucasian patients. A partial tumor response was observed in one patient with non-small-cell lung cancer (NSCLC) and in one patient with melanoma. Conclusions Pembrolizumab at both 2 and 10 mg/kg Q2W was well tolerated in Japanese patients with advanced solid tumors and showed encouraging anti-tumor activity against melanoma and NSCLC.

Keywords: Anti-PD-1 therapy; PD-L1; Pembrolizumab; Pharmacokinetics; Phase I study.

Figures

Fig. 1
Fig. 1
Serum concentration–time profiles of pembrolizumab following the first administration. Symbols and error bars indicate the mean ± SD
Fig. 2
Fig. 2
PK parameters versus dose following the first administration of pembrolizumab in Japanese and non-Japanese patients with advanced solid tumors. AUC0-∞ total area under the concentration–time curve, Cmax maximum concentration, CL clearance, Vz the terminal phase volume
Fig. 3
Fig. 3
PET-CT images taken before the start of treatment and after cycle 7 show evidence of antitumor activity. A rapid and durable partial response according to irRC was observed in a 91-year-old man with advanced metastatic acral lentiginous melanoma who had active disease in the liver and multiple lymph nodes when treatment with pembrolizumab at 10 mg/kg Q2W was initiated

References

    1. Disis ML. Immune regulation of cancer. J Clin Oncol. 2010;28:4531–4538. doi: 10.1200/JCO.2009.27.2146.
    1. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800. doi: 10.1038/nm0902-1039c.
    1. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002;2:116–126. doi: 10.1038/nri727.
    1. Brown JA, Dorfman DM, Ma F-R, Sullivan EL, Munoz O, Wood CR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170:1257–1266. doi: 10.4049/jimmunol.170.3.1257.
    1. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–242. doi: 10.1111/j.1600-065X.2010.00923.x.
    1. Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC, et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res. 2007;13:1757–1761. doi: 10.1158/1078-0432.CCR-06-2599.
    1. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007;13:2151–2157. doi: 10.1158/1078-0432.CCR-06-2746.
    1. Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–979. doi: 10.1158/1078-0432.CCR-08-1608.
    1. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104:3360–3365. doi: 10.1073/pnas.0611533104.
    1. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011;28:682–688. doi: 10.1007/s12032-010-9515-2.
    1. Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D, et al. PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol. 2009;182:5240–5249. doi: 10.4049/jimmunol.0803245.
    1. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–979. doi: 10.1158/1078-0432.CCR-08-1608.
    1. Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 2007;56:739–745. doi: 10.1007/s00262-006-0272-1.
    1. Tsushima F, Tanaka K, Otsuki N, Youngnak P, Iwai H, Omura K, et al. Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol. 2006;42:268–274. doi: 10.1016/j.oraloncology.2005.07.013.
    1. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293–12297. doi: 10.1073/pnas.192461099.
    1. Sznol M, Powderly JD, Smith DC, Brahmer JR, Drake CG, McDermott DF, et al. Safety and antitumor activity of biweekly MDX-1106 (anti-PD-1, BMS-936558/ONO-4538) in patients with advanced refractory malignancies [Abstract] J Clin Oncol. 2010;28(Suppl):2506.
    1. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–3175. doi: 10.1200/JCO.2009.26.7609.
    1. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–4293. doi: 10.1158/1078-0432.CCR-14-2607.
    1. Ji Y, Li Y, Nebiyou Bekele B. Dose-finding in phase I clinical trials based on toxicity probability intervals. Clin Trials. 2007;4:235–244. doi: 10.1177/1740774507079442.
    1. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–7420. doi: 10.1158/1078-0432.CCR-09-1624.
    1. Chen TW, Razak AR, Bedard PL, Siu LL, Hansen AR. A systematic review of immune-related adverse event reporting in clinical trials of immune checkpoint inhibitors. Ann Oncol. 2015;26:1824–1829. doi: 10.1093/annonc/mdv182.
    1. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30:2691–2697. doi: 10.1200/JCO.2012.41.6750.
    1. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–2028. doi: 10.1056/NEJMoa1501824.
    1. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–2520. doi: 10.1056/NEJMoa1500596.
    1. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348.
    1. Ribas A, Robert C, Hodi FS, Wolchok JD, Joshua AM, Hwu WJ et al. (2015) Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature [Meeting Abstract]. J Clin Oncol 33 (suppl; abstr 3001)
    1. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–918. doi: 10.1016/S1470-2045(15)00083-2.
    1. Robert C, Joshua AM, Weber JS, Ribas A, Hodi FS, Kefford RF et al. (2014) Pembrolizumab (Pembro; MK-3475) for advanced melanoma (MEL): randomized comparison of two dosing schedules. Ann Oncol 25 (suppl 4): doi: 10.1093/annonc/mdu438.42
    1. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–2532. doi: 10.1056/NEJMoa1503093.
    1. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–1117. doi: 10.1016/S0140-6736(14)60958-2.
    1. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2015

Source: PubMed

3
订阅