Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases

James L Richards, Yu Anne Yap, Keiran H McLeod, Charles R Mackay, Eliana Mariño, James L Richards, Yu Anne Yap, Keiran H McLeod, Charles R Mackay, Eliana Mariño

Abstract

It is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases. Recent studies have demonstrated a remarkable role for diet, the gut microbiota and their metabolites-the short-chain fatty acids (SCFAs)-in the pathogenesis of several inflammatory diseases, such as asthma, arthritis, inflammatory bowel disease, colon cancer and wound-healing. This review summarizes how diet, microbiota and gut microbial metabolites (particularly SCFAs) can modulate the progression of inflammatory diseases and autoimmunity, and reveal the molecular mechanisms (metabolite-sensing G protein-coupled receptor (GPCRs) and inhibition of histone deacetylases (HDACs)). Therefore, considerable benefit could be achieved simply through the use of diet, probiotics and metabolites for the prevention and treatment of inflammatory diseases and autoimmunity.

Figures

Figure 1
Figure 1
General model of how diet may be contributing to human inflammatory diseases such as obesity, T1D, T2D and kidney and cardiovascular diseases. Diet-induced changes to gut microbiota, and reduced production of SCFAs, lead to changed signalling through GPCRs, changes to gene transcription through HDAC effects and resulting changes to gut homeostasis, Treg biology and regulation of inflammation.

References

    1. Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 2014; 40: 833–842.
    1. King DE, Mainous AG 3rd, Lambourne CA. Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet 2012; 112: 642–648.
    1. Cameron AJ, Welborn TA, Zimmet PZ, Dunstan DW, Owen N, Salmon J et al. Overweight and obesity in Australia: the 1999-2000 Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Med J Aust 2003; 178: 427–432.
    1. Chow FY, Briganti EM, Kerr PG, Chadban SJ, Zimmet PZ, Atkins RC. Health-related quality of life in Australian adults with renal insufficiency: a population-based study. Am J Kidney Dis 2003; 41: 596–604.
    1. Kondrashova A, Reunanen A, Romanov A, Karvonen A, Viskari H, Vesikari T et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med 2005; 37: 67–72.
    1. Simpson RW, Shaw JE, Zimmet PZ. The prevention of type 2 diabetes—lifestyle change or pharmacotherapy? A challenge for the 21st century. Diabet Res Clin Prac 2003; 59: 165–180.
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480–484.
    1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107: 14691–14696.
    1. Macia L, Thorburn AN, Binge LC, Marino E, Rogers KE, Maslowski KM et al. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol Rev 2012; 245: 164–176.
    1. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121: 91–119.
    1. Funda DP, Kaas A, Tlaskalova-Hogenova H, Buschard K. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev 2008; 24: 59–63.
    1. Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 2015; 14: 479–489.
    1. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519: 92–96.
    1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011; 474: 327–336.
    1. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148: 1258–1270.
    1. Hartley L, May MD, Loveman E, Colquitt JL, Rees K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Revi 2016; 1: Cd011472.
    1. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013; 368: 1279–1290.
    1. Bird AR, Brown IL, Topping DL. Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol 2000; 1: 25–37.
    1. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012; 150: 470–480.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027–1031.
    1. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B et al. The microbiome of uncontacted Amerindians. Sci Adv 2015; 1: e1500183.
    1. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001; 81: 1031–1064.
    1. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004; 91: 915–923.
    1. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 2010; 10: 63.
    1. Russell WR, Duncan SH, Flint HJ. The gut microbial metabolome: modulation of cancer risk in obese individuals. Proc Nutr Soc 2013; 72: 178–188.
    1. Balmer ML, Slack E, de Gottardi A, Lawson MA, Hapfelmeier S, Miele L et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Tansl Med 2014; 6: 237ra266.
    1. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761–1772.
    1. Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, Cuesta A et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013; 494: 116–120.
    1. Kirkland D, Benson A, Mirpuri J, Pifer R, Hou B, DeFranco AL et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 2012; 36: 228–238.
    1. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K et al. Bifidobacteriacan protect from enteropathogenic infection through production of acetate. Nature 2011; 469: 543–547.
    1. Vaarala O, Atkinson MA, Neu J. The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 2008; 57: 2555–2562.
    1. Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 2013; 37: 1–6.
    1. Toden S, Bird AR, Topping DL, Conlon MA. Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutr Cancer 2005; 51: 45–51.
    1. Clarke JM, Topping DL, Bird AR, Young GP, Cobiac L. Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats. Carcinogenesis 2008; 29: 2190–2194.
    1. Conlon MA, Kerr CA, McSweeney CS, Dunne RA, Shaw JM, Kang S et al. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. J Nutr 2012; 142: 832–840.
    1. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 2011; 17: 1519–1528.
    1. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461: 1282–1286.
    1. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278: 11312–11319.
    1. Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Lan L et al. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res 2014; 74: 1166–1178.
    1. Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103: 51–56.
    1. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H et al. Activation of gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40: 128–139.
    1. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 2015; 6: 6734.
    1. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9: 799–809.
    1. Flach M, Diefenbach A. Development of Gut-Associated Lymphoid Tissues. In: Mestecky V et al (eds). Mucosal Immunology. 4th edn, vol. 1-2, Academic press, 2015, pp 31-42.
    1. Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011; 141: 227–236.
    1. Gibbons DL, Spencer J. Mouse and human intestinal immunity: same ballpark, different players; Different rules, same score. Mucosal Immunol 2011; 4: 148–157.
    1. Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14: 660–667.
    1. Sonnenberg G, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 2012; 37: 601–610.
    1. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 2012; 491: 259–263.
    1. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008; 453: 65–71.
    1. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012; 336: 1321–1325.
    1. Bollrath J, Powrie F. Immunology. Feed your Tregs more fiber. Science 2013; 341: 463–464.
    1. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446–450.
    1. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573.
    1. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34: 794–806.
    1. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 2015; 6: 7320.
    1. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol 2009; 587: 4153–4158.
    1. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499: 97–101.
    1. Gummesson A, Carlsson LMS, Storlien LH, Bäckhed F, Lundin P, Löfgren L et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity 2011; 19: 2280–2282.
    1. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G et al. Increased intestinal permeability in obese mice: New evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol 2007; 292: G518–G525.
    1. Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE 2012; 7: e34233.
    1. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 2015; 21: 527–542.
    1. Farhadi A, Gundlapalli S, Shaikh M, Frantzides C, Harrell L, Kwasny MM et al. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int 2008; 28: 1026–1033.
    1. Moreno-Navarrete JM, Sabater M, Ortega F, Ricart W, Fernández-Real JM. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS ONE 2012; 7: e37160.
    1. Hasnain SZ, Borg DJ, Harcourt BE, Tong H, Sheng YH, Ng CP et al. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med 2014; 20: 1417–1426.
    1. Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014; 514: 237–241.
    1. Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, Lamichhane A et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014; 345: 1254009.
    1. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008; 456: 507–510.
    1. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 102: 11070–11075.
    1. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103.
    1. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262–266.
    1. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364–371.
    1. Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med 2014; 20: 759–763.
    1. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 2004; 101: 1045–1050.
    1. Zaibi MS, Stocker CJ, O'Dowd J, Davies A, Bellahcene M, Cawthorne MA et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 2010; 584: 2381–2386.
    1. Al-Lahham S, Roelofsen H, Rezaee F, Weening D, Hoek A, Vonk R et al. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur J Clin Invest 2012; 42: 357–364.
    1. Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005; 146: 5092–5099.
    1. Plaisance EP, Lukasova M, Offermanns S, Zhang Y, Cao G, Judd RL. Niacin stimulates adiponectin secretion through the GPR109A receptor. Am J Physiol Endocrinol Metab 2009; 296: E549–E558.
    1. Tang C, Ahmed K, Gille A, Lu S, Grone HJ, Tunaru S et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 2015; 21: 173–177.
    1. Todesco T, Zamboni M, Armellini F, Bissoli L, Turcato E, Piemonte G et al. Plasma acetate levels in a group of obese diabetic, obese normoglycemic, and control subjects and their relationships with other blood parameters. Am J Gastroenterol 1993; 88: 751–755.
    1. Bellahcene M, O'Dowd JF, Wargent ET, Zaibi MS, Hislop DC, Ngala RA et al. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr 2013; 109: 1755–1764.
    1. Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011; 300: E211–E220.
    1. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4: 1829.
    1. Lin HV, Frassetto A, Kowalik EJ Jr. Nawrocki AR, Lu MM, Kosinski JR et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012; 7: e35240.
    1. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008; 105: 16767–16772.
    1. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15: 930–939.
    1. Mathias RA, Guise AJ, Cristea IM. Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Mol Cell Proteomics 2015; 14: 456–470.
    1. De Ruijter AJM, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg ABP. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J 2003; 370: 737–749.
    1. Chatterjee TK, Basford JE, Knoll E, Tong WS, Blanco V, Blomkalns AL et al. HDAC9 knockout mice are protected from adipose tissue dysfunction and systemic metabolic disease during high-fat feeding. Diabetes 2014; 63: 176–187.
    1. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014; 25: 657–670.
    1. Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M et al. Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 2016; 310: F857–F871.
    1. Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJF, De Almeida DC et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 2015; 26: 1877–1888.
    1. Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 2013; 33: 363–374.
    1. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13: 673–691.
    1. Sweet MJ, Shakespear MR, Kamal NA, Fairlie DP. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation. Immunol Cell Biol 2012; 90: 14–22.
    1. Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev 2010; 24: 455–469.
    1. Fann M, Godlove JM, Catalfamo M, Wood Iii WH, Chrest FJ, Chun N et al. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response. Blood 2006; 108: 3363–3370.
    1. Northrop JK, Wells AD, Shen H. Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells. J Immunol 2008; 181: 865–868.
    1. Villagra A, Sotomayor EM, Seto E. Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 2010; 29: 157–173.
    1. Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 2010; 53: 741–748.
    1. Bosi E, Molteni L, Radaelli MG, Folini L, Fermo I, Bazzigaluppi E et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006; 49: 2824–2827.
    1. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 2006; 55: 1443–1449.
    1. Visser JTJ, Lammers K, Hoogendijk A, Boer MW, Brugman S, Beijer-Liefers S et al. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia 2010; 53: 2621–2628.
    1. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 2013; 62: 1238–1244.
    1. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011; 5: 82–91.
    1. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455: 1109–1113.
    1. Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013; 339: 1084–1088.
    1. Calcinaro F, Dionisi S, Marinaro M, Candeloro P, Bonato V, Marzotti S et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 2005; 48: 1565–1575.
    1. Ljungberg M, Korpela R, Ilonen J, Ludvigsson J, Vaarala O. Probiotics for the prevention of beta cell autoimmunity in children at genetic risk of type 1 diabetes—the PRODIA study. Ann N Y Acad Sci 2006; 1079: 360–364.
    1. Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J, Deroos P et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451–455.
    1. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005; 6: 331–337.
    1. Zhang Y, Maksimovic J, Naselli G, Qian J, Chopin M, Blewitt ME et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood 2013; 122: 2823–2836.
    1. Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 2007; 104: 4571–4576.
    1. Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 2007; 13: 1299–1307.
    1. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev 2008; 8: 523–532.
    1. Mariño E, Batten M, Groom J, Walters S, Liuwantara D, Mackay F et al. Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes 2008; 57: 395–404.
    1. Marino E, Tan B, Binge L, Mackay CR, Grey ST. B-cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 2012; 61: 2893–2905.
    1. Waibel M, Christiansen AJ, Hibbs ML, Shortt J, Jones SA, Simpson I et al. Manipulation of B-cell responses with histone deacetylase inhibitors. Nat Commun 2015; 6: 6838.
    1. White CA, Pone EJ, Lam T, Tat C, Hayama KL, Li G et al. Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses. J Immunol 2014; 193: 5933–5950.
    1. Ejsing-Duun M, Josephsen J, Aasted B, Buschard K, Hansen AK. Dietary gluten reduces the number of intestinal regulatory T cells in mice. Scand J Immunol 2008; 67: 553–559.
    1. Zanzi D, Stefanile R, Santagata S, Iaffaldano L, Iaquinto G, Giardullo N et al. IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. Am J Gastroenterol 2011; 106: 1308–1317.
    1. Haines ML, Anderson RP, Gibson PR. Systematic review: the evidence base for long-term management of coeliac disease. Alimentary Pharmacol Ther 2008; 28: 1042–1066.
    1. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529: 212–215.
    1. Blümer N, Sel S, Virna S, Patrascan CC, Zimmermann S, Herz U et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 2007; 37: 348–357.
    1. Khoruts A, Sadowsky MJ, Hamilton MJ. Development of fecal microbiota transplantation suitable for mainstream medicine. Clin Gastroenterol Hepatol 2015; 13: 246–250.
    1. Prescott SL. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol 2013; 131: 23–30.

Source: PubMed

3
订阅