The large-scale structural connectome of task-specific focal dystonia

Sandra Hanekamp, Kristina Simonyan, Sandra Hanekamp, Kristina Simonyan

Abstract

The emerging view of dystonia is that of a large-scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger-scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion-weighted imaging and graph theoretical analysis, we examined inter-regional white matter connectivity of the whole-brain structural network in two different forms of task-specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large-scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form-specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.

Keywords: DWI; focal hand dystonia; laryngeal dystonia; motor control.

Conflict of interest statement

The authors declare no conflicts of interest.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Figures

FIGURE 1
FIGURE 1
An overview of the imaging processing pipeline. (1) The uniform T1‐weighted image was skull‐stripped by segmenting gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), multiplying the resulting whole‐brain mask to the image; (2) the anatomical scan was transformed to match the AFNI standard reference template in Talairach‐Tournoux space; (3) motion and eddy current distortions were corrected for both the anterior–posterior (AP) and posterior–anterior (PA) diffusion‐weighted imaging (DWI) data sets using a T2‐weighted imitation image. AP and PA were combined to generate the final DWI reconstruction; (4) the diffusion ellipsoids and parameters were calculated using a nonlinear fitting method; (5) whole‐brain coverage with 116 anatomical regions of interest (ROIs) based on the macrolabel atlas was transferred into individual DWI space; (6) deterministic fiber tracking was performed in the native space between all pairs of ROIs; (7) a 116 × 116 adjacency matrix for each subject was created based on the normalized number of streamlines, thresholded, and used as the measure of structural pairwise connectivity between all ROI pairs (i.e., the nodes of the network)
FIGURE 2
FIGURE 2
Overall structural neural community architecture. (a) The 116 × 116 matrices show averaged number of streamlines between each pair of brain regions in healthy controls, patients with laryngeal dystonia and writer's cramp, respectively. The neural community partition is based on the normalized number of streamlines between each pair of regions. The modules of the network are ordered and visualized according to the community structure. (b) The connectograms shows the same modules as in (a), with nodes (circles) labeled according to their regions and the degree/strength hubs (larger circles, bold labels) distributed within each module. 3D brain view in the center of the connectograms shows the spatial distribution of neural communities, with spheres representing hubs in each module. The modules are color‐coded as follows: red—Module I, yellow—Module II, green—Module III, blue—Module IV, purple—Module V. Results were visualized with BrainNet Viewer, NeuroMArVL, and MATLAB scripts. ACC, anterior cingulate cortex; AG, angular gyrus; Amy, amygdala; Calc, calcarine gyrus; Cau, caudate nucleus; Cbl, cerebellum; Cun, cuneus; FG, fusiform gyrus; Hip, hippocampus; HG, Heschl's gyrus; Ins, insula; IOG, inferior occipital gyrus; IPL, inferior parietal lobule; ITG, inferior temp gyrus; LG, lingual gyrus; MCC, middle cingulate; MFG, middle frontal gyrus; moG, middle orbital gyrus; MOG, middle occipital gyrus; MoG, medial orbital gyrus; MTG, middle temporal gyrus; mTP, medial temp pole; OG, olfactory gyrus; OP, operculum; Pal, pallidum; PCG, postcentral gyrus; PCC, posterior cingulate cortex; PCL, paracentral lobule; PCN, precuneus; pHC, parahippocampal; pOp, pars opercularis; pOr, pars orbitalis; PrCG, precentral gyrus; pTri, pars triangularis; Put, putamen; RG, rectal gyrus; SFG, superior frontal gyrus; SMA, supplementary motor area; SmG, superior medial gyrus; SMG, supramarginal gyrus; SOG, superior occipital gyrus; SoG, superior orbital gyrus; SPL, superior parietal lobule; STG, superior temporal gyrus; Tha, thalamus; TP, temporal pole; Ver, cerebellar vermis
FIGURE 3
FIGURE 3
Hub abnormalities and clinical correlates of network‐wide alterations. (a) The 3D brain views show common and distinct abnormalities in hub formation in patients with laryngeal dystonia and writer's cramp compared to healthy controls, respectively. Larger circles depict hubs gained within the respective module; smaller circles represent hubs lost within the respective module; hubs are color‐coded based on their modular affiliation. (b) The scatterplot shows the correlation between the clinical characteristics of dystonia and altered nodal measures within the respective networks. The duration and age of dystonia onset were established as part of neurological/laryngological evaluation; dystonia severity was assessed using the Burke–Fahn–Marsden Dystonia Rating Scale (BFM), including the movement and disability scores
FIGURE 4
FIGURE 4
Significant regional alterations of the structural connectome of dystonia patients compared to healthy controls. 3D brain renderings and bar graphs show significant regional changes in nodal degree, nodal strength, and betweenness centrality in (a) patients with laryngeal dystonia and (b) patients with writer's cramp compared to healthy controls, respectively. Error bars show SD; red bars indicate increases in nodal measures in patients compared to controls; blue bars depict decreases in nodal measures in patients compared controls; gray bars show the normative values in healthy controls. ACC, anterior cingulate cortex; HC, healthy controls; Ins, insula; L, left; PCL, paracentral lobule; R, right; SMA, supplementary motor area; SPL, superior parietal lobule; TSFD, task‐specific focal dystonia

References

    1. Adolphs, R. (2016). Human lesion studies in the 21st century. Neuron, 90, 1151–1153.
    1. Ali, S. O. , Thomassen, M. , Schulz, G. M. , Hosey, L. A. , Varga, M. , Ludlow, C. L. , & Braun, A. R. (2006). Alterations in CNS activity induced by botulinum toxin treatment in spasmodic dysphonia: An H215O PET study. Journal of Speech, Language, and Hearing Research, 49, 1127–1146.
    1. Arrighi, P. , Bonfiglio, L. , Minichilli, F. , Cantore, N. , Carboncini, M. C. , Piccotti, E. , … Andre, P. (2016). EEG theta dynamics within frontal and parietal cortices for error processing during reaching movements in a prism adaptation study altering visuo‐motor predictive planning. PLoS One, 11, e0150265.
    1. Battistella, G. , & Simonyan, K. (2019). Top‐down alteration of functional connectivity within the sensorimotor network in focal dystonia. Neurology, 92, e1843–e1851.
    1. Battistella, G. , Termsarasab, P. , Ramdhani, R. A. , Fuertinger, S. , & Simonyan, K. (2017). Isolated focal dystonia as a disorder of large‐scale functional networks. Cerebral Cortex, 27, 1203–1215.
    1. Berardelli, A. , Rothwell, J. C. , Hallett, M. , Thompson, P. D. , Manfredi, M. , & Marsden, C. D. (1998). The pathophysiology of primary dystonia. Brain, 121(Pt 7), 1195–1212.
    1. Berman, B. D. , Herscovitch, P. , Hallett, M. , & Simonyan, K. (2010). Striatal dopaminergic function in writer's cramp. Movement Disorders, 25, S229–S229.
    1. Bianchi, S. , Battistella, G. , Huddlestone, H. , Scharf, R. , Fleysher, L. , Rumbach, A. F. , … Simonyan, K. (2017). Phenotype‐ and genotype‐specific structural alterations in spasmodic dysphonia. Movement Disorders, 32, 560–568.
    1. Bianchi, S. , Fuertinger, S. , Huddleston, H. , Frucht, S. J. , & Simonyan, K. (2019). Functional and structural neural bases of task specificity in isolated focal dystonia. Movement Disorders, 34, 555–563.
    1. Blondel, V. D. , Guillaume, J. L. , Lambiotte, R. , & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics‐Theory and Experiment, P10008.
    1. Bonini, F. , Burle, B. , Liegeois‐Chauvel, C. , Regis, J. , Chauvel, P. , & Vidal, F. (2014). Action monitoring and medial frontal cortex: Leading role of supplementary motor area. Science, 343, 888–891.
    1. Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25, 163–177.
    1. Buchanan, C. R. , Bastin, M. E. , Ritchie, S. J. , Liewald, D. C. , Madole, J. W. , Tucker‐Drob, E. M. , … Cox, S. R. (2020). The effect of network thresholding and weighting on structural brain networks in the UK Biobank. NeuroImage, 211, 116443.
    1. Bush, G. , Luu, P. , & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.
    1. Bush, G. , Vogt, B. A. , Holmes, J. , Dale, A. M. , Greve, D. , Jenike, M. A. , & Rosen, B. R. (2002). Dorsal anterior cingulate cortex: A role in reward‐based decision making. Proceedings of the National Academy of Sciences of the United States of America, 99, 523–528.
    1. Ceballos‐Baumann, A. O. , Sheean, G. , Passingham, R. E. , Marsden, C. D. , & Brooks, D. J. (1997). Botulinum toxin does not reverse the cortical dysfunction associated with writer's cramp. A PET study. Brain, 120(Pt 4), 571–582.
    1. Chen, X. , Lu, B. , & Yan, C. G. (2018). Reproducibility of R‐fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Human Brain Mapping, 39, 300–318.
    1. Cheng, H. , Wang, Y. , Sheng, J. , Kronenberger, W. G. , Mathews, V. P. , Hummer, T. A. , & Saykin, A. J. (2012). Characteristics and variability of structural networks derived from diffusion tensor imaging. NeuroImage, 61, 1153–1164.
    1. Conte, A. , Rocchi, L. , Latorre, A. , Belvisi, D. , Rothwell, J. C. , & Berardelli, A. (2019). Ten‐year reflections on the neurophysiological abnormalities of focal dystonias in humans. Movement Disorders, 34, 1616–1628.
    1. Daw, N. D. , O'Doherty, J. P. , Dayan, P. , Seymour, B. , & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879.
    1. de Brito Robalo, B. M. , Vlegels, N. , Meier, J. , Leemans, A. , Biessels, G. J. , & Reijmer, Y. D. (2020). Effect of fixed‐density thresholding on structural brain networks: a demonstration in cerebral small vessel disease. Brain Connectivity.
    1. de Lima Xavier, L. , & Simonyan, K. (2019). The extrinsic risk and its association with neural alterations in spasmodic dysphonia. Parkinsonism & Related Disorders, 65, 117‐123.
    1. Defazio, G. , Berardelli, A. , & Hallett, M. (2007). Do primary adult‐onset focal dystonias share aetiological factors? Brain, 130, 1183–1193.
    1. Delmaire, C. , Vidailhet, M. , Elbaz, A. , Bourdain, F. , Bleton, J. P. , Sangla, S. , … Lehericy, S. (2007). Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology, 69, 376–380.
    1. Delmaire, C. , Vidailhet, M. , Wassermann, D. , Descoteaux, M. , Valabregue, R. , Bourdain, F. , … Lehericy, S. (2009). Diffusion abnormalities in the primary sensorimotor pathways in writer's cramp. Archives of Neurology, 66, 502–508.
    1. Eickhoff, S. B. , Stephan, K. E. , Mohlberg, H. , Grefkes, C. , Fink, G. R. , Amunts, K. , & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25, 1325–1335.
    1. Fuertinger, S. , Horwitz, B. , & Simonyan, K. (2015). The functional connectome of speech control. PLoS Biology, 13, e1002209.
    1. Fuertinger, S. , & Simonyan, K. (2017). Connectome‐wide phenotypical and genotypical associations in focal dystonia. The Journal of Neuroscience, 37, 7438–7449.
    1. Fuertinger, S. , & Simonyan, K. (2018). Task‐specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel. Mov Disord, 33(12), 1918–1927.
    1. Gallea, C. , Herath, P. , Voon, V. , Lerner, A. , Ostuni, J. , Saad, Z. , … Hallett, M. (2018). Loss of inhibition in sensorimotor networks in focal hand dystonia. Neuroimage Clinical, 17, 90–97.
    1. Gallea, C. , Horovitz, S. G. , Ali Najee‐Ullah, M. , & Hallett, M. (2016). Impairment of a parieto‐premotor network specialized for handwriting in writer's cramp. Human Brain Mapping, 37, 4363–4375.
    1. Garraux, G. , Bauer, A. , Hanakawa, T. , Wu, T. , Kansaku, K. , & Hallett, M. (2004). Changes in brain anatomy in focal hand dystonia. Annals of Neurology, 55, 736–739.
    1. Gauvin, H. S. , De Baene, W. , Brass, M. , & Hartsuiker, R. J. (2016). Conflict monitoring in speech processing: An fMRI study of error detection in speech production and perception. NeuroImage, 126, 96–105.
    1. Granert, O. , Peller, M. , Gaser, C. , Groppa, S. , Hallett, M. , Knutzen, A. , … Siebner, H. R. (2011). Manual activity shapes structure and function in contralateral human motor hand area. NeuroImage, 54, 32–41.
    1. Greene, C. , Cieslak, M. , & Grafton, S. T. (2018). Effect of different spatial normalization approaches on tractography and structural brain networks. Network Neuroscience, 2, 362–380.
    1. Hagmann, P. , Cammoun, L. , Gigandet, X. , Meuli, R. , Honey, C. J. , Wedeen, V. J. , & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.
    1. Holroyd, C. B. , & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error‐related negativity. Psychological Review, 109, 679–709.
    1. Irfanoglu, M. O. , Modi, P. , Nayak, A. , Hutchinson, E. B. , Sarlls, J. , & Pierpaoli, C. (2015). DR‐BUDDI (diffeomorphic registration for blip‐up blip‐down diffusion imaging) method for correcting echo planar imaging distortions. NeuroImage, 106, 284–299.
    1. Karnath, H. O. , Baier, B. , & Nagele, T. (2005). Awareness of the functioning of one's own limbs mediated by the insular cortex? The Journal of Neuroscience, 25, 7134–7138.
    1. Kovach, C. K. , Daw, N. D. , Rudrauf, D. , Tranel, D. , O'Doherty, J. P. , & Adolphs, R. (2012). Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends. The Journal of Neuroscience, 32, 8434–8442.
    1. Lerner, A. , Shill, H. , Hanakawa, T. , Bushara, K. , Goldfine, A. , & Hallett, M. (2004). Regional cerebral blood flow correlates of the severity of writer's cramp symptoms. NeuroImage, 21, 904–913.
    1. Loucks, T. M. , Poletto, C. J. , Simonyan, K. , Reynolds, C. L. , & Ludlow, C. L. (2007). Human brain activation during phonation and exhalation: Common volitional control for two upper airway functions. NeuroImage, 36, 131–143.
    1. Maguire, F. , Reilly, R. B. , & Simonyan, K. (2020). Normal temporal discrimination in musician's dystonia is linked to aberrant sensorimotor processing. Movement Disorders.
    1. Maier‐Hein, K. H. , Neher, P. F. , Houde, J. C. , Cote, M. A. , Garyfallidis, E. , Zhong, J. , … Descoteaux, M. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8, 1349.
    1. Marsden, C. D. , Obeso, J. A. , Zarranz, J. J. , & Lang, A. E. (1985). The anatomical basis of symptomatic hemidystonia. Brain, 108(Pt 2), 463–483.
    1. Menon, V. , & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214, 655–667.
    1. Newman, M. E. , & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 69, 026113.
    1. Neychev, V. K. , Gross, R. E. , Lehericy, S. , Hess, E. J. , & Jinnah, H. A. (2011). The functional neuroanatomy of dystonia. Neurobiology of Disease, 42, 185–201.
    1. Nichols, T. E. , & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.
    1. Oh, S. W. , Harris, J. A. , Ng, L. , Winslow, B. , Cain, N. , Mihalas, S. , … Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508, 207–214.
    1. Peller, M. , Zeuner, K. E. , Munchau, A. , Quartarone, A. , Weiss, M. , Knutzen, A. , … Siebner, H. R. (2006). The basal ganglia are hyperactive during the discrimination of tactile stimuli in writer's cramp. Brain, 129, 2697–2708.
    1. Pochon, J. B. , Levy, R. , Fossati, P. , Lehericy, S. , Poline, J. B. , Pillon, B. , … Dubois, B. (2002). The neural system that bridges reward and cognition in humans: An fMRI study. Proceedings of the National Academy of Sciences of the United States of America, 99, 5669–5674.
    1. Putzel, G. G. , Battistella, G. , Rumbach, A. F. , Ozelius, L. J. , Sabuncu, M. R. , & Simonyan, K. (2018). Polygenic risk of spasmodic dysphonia is associated with vulnerable sensorimotor connectivity. Cerebral Cortex, 28, 158–166.
    1. Ramdhani, R. A. , Kumar, V. , Velickovic, M. , Frucht, S. J. , Tagliati, M. , & Simonyan, K. (2014). What's special about task in dystonia? A voxel‐based morphometry and diffusion weighted imaging study. Movement Disorders, 29, 1141‐1150.
    1. Roberts, J. A. , Perry, A. , Roberts, G. , Mitchell, P. B. , & Breakspear, M. (2017). Consistency‐based thresholding of the human connectome. NeuroImage, 145, 118–129.
    1. Rong, F. , Isenberg, A. L. , Sun, E. , & Hickok, G. (2018). The neuroanatomy of speech sequencing at the syllable level. PLoS One, 13, e0196381.
    1. Rubinov, M. , & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.
    1. Rubinov, M. , Sporns, O. , van Leeuwen, C. , & Breakspear, M. (2009). Symbiotic relationship between brain structure and dynamics. BMC Neuroscience, 10, 55.
    1. Sarwar, T. , Ramamohanarao, K. , & Zalesky, A. (2019). Mapping connectomes with diffusion MRI: Deterministic or probabilistic tractography? Magnetic Resonance in Medicine, 81, 1368–1384.
    1. Schirinzi, T. , Sciamanna, G. , Mercuri, N. B. , & Pisani, A. (2018). Dystonia as a network disorder: A concept in evolution. Current Opinion in Neurology, 31, 498–503.
    1. Simonyan, K. (2018). Neuroimaging applications in dystonia. International Review of Neurobiology, 143, 1–30.
    1. Simonyan, K. , Berman, B. D. , Herscovitch, P. , & Hallett, M. (2013). Abnormal striatal dopaminergic neurotransmission during rest and task production in spasmodic dysphonia. The Journal of Neuroscience, 33, 14705–14714.
    1. Simonyan, K. , & Jurgens, U. (2002). Cortico‐cortical projections of the motorcortical larynx area in the rhesus monkey. Brain Research, 949, 23–31.
    1. Simonyan, K. , & Ludlow, C. L. (2010). Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: An fMRI study. Cerebral Cortex, 20, 2749–2759.
    1. Simonyan, K. , & Ludlow, C. L. (2012). Abnormal structure‐function relationship in spasmodic dysphonia. Cerebral Cortex, 22, 417–425.
    1. Simonyan, K. , Tovar‐Moll, F. , Ostuni, J. , Hallett, M. , Kalasinsky, V. F. , Lewin‐Smith, M. R. , … Ludlow, C. L. (2008). Focal white matter changes in spasmodic dysphonia: A combined diffusion tensor imaging and neuropathological study. Brain, 131, 447–459.
    1. Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23, 162–171.
    1. Sridharan, D. , Levitin, D. J. , & Menon, V. (2008). A critical role for the right fronto‐insular cortex in switching between central‐executive and default‐mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569–12574.
    1. Suri, R. , Rodriguez‐Porcel, F. , Donohue, K. , Jesse, E. , Lovera, L. , Dwivedi, A. K. , & Espay, A. J. (2018). Post‐stroke movement disorders: The clinical, neuroanatomic, and demographic portrait of 284 published cases. Journal of Stroke and Cerebrovascular Diseases, 27, 2388–2397.
    1. Swann, N. C. , Cai, W. , Conner, C. R. , Pieters, T. A. , Claffey, M. P. , George, J. S. , … Tandon, N. (2012). Roles for the pre‐supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. NeuroImage, 59, 2860–2870.
    1. Taylor, P. A. , & Saad, Z. S. (2013). FATCAT: (an efficient) functional and tractographic connectivity analysis toolbox. Brain Connectivity, 3, 523–535.
    1. To, W. T. , De Ridder, D. , Hart, J., Jr. , & Vanneste, S. (2018). Changing brain networks through non‐invasive neuromodulation. Frontiers in Human Neuroscience, 12, 128.
    1. Turkheimer, F. , Pettigrew, K. , Sokoloff, L. , Smith, C. B. , & Schmidt, K. (2000). Selection of an adaptive test statistic for use with multiple comparison analyses of neuroimaging data. NeuroImage, 12, 219–229.
    1. van den Heuvel, M. P. , & Sporns, O. (2011). Rich‐club organization of the human connectome. The Journal of Neuroscience, 31, 15775–15786.
    1. Veronese, M. , Moro, L. , Arcolin, M. , Dipasquale, O. , Rizzo, G. , Expert, P. , … Turkheimer, F. E. (2019). Covariance statistics and network analysis of brain PET imaging studies. Scientific Reports, 9, 2496.
    1. Volkmann, J. , Wolters, A. , Kupsch, A. , Muller, J. , Kuhn, A. A. , Schneider, G. H. , … DBS Study Group for Dystonia . (2012). Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5‐year follow‐up of a randomised trial. The Lancet. Neurology, 11, 1029–1038.
    1. Wei, K. , Cieslak, M. , Greene, C. , Grafton, S. T. , & Carlson, J. M. (2018). Sensitivity analysis of human brain structural network construction. Network Neuroscience, 1, 446–467.
    1. Xu, P. , Gu, R. , Broster, L. S. , Wu, R. , Van Dam, N. T. , Jiang, Y. , … Luo, Y. J. (2013). Neural basis of emotional decision making in trait anxiety. The Journal of Neuroscience, 33, 18641–18653.
    1. Zalesky, A. , Fornito, A. , Cocchi, L. , Gollo, L. L. , van den Heuvel, M. P. , & Breakspear, M. (2016). Connectome sensitivity or specificity: Which is more important? NeuroImage, 142, 407–420.
    1. Zeuner, K. E. , Knutzen, A. , Granert, O. , Sablowsky, S. , Gotz, J. , Wolff, S. , … Witt, K. (2016). Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp. Neuroimage Clinical, 10, 63–70.
    1. Zoons, E. , Booij, J. , Nederveen, A. J. , Dijk, J. M. , & Tijssen, M. A. (2011). Structural, functional and molecular imaging of the brain in primary focal dystonia—A review. NeuroImage, 56, 1011–1020.

Source: PubMed

3
S'abonner