Targeted Vagus Nerve Stimulation for Rehabilitation After Stroke

Navzer D Engineer, Teresa J Kimberley, Cecília N Prudente, Jesse Dawson, W Brent Tarver, Seth A Hays, Navzer D Engineer, Teresa J Kimberley, Cecília N Prudente, Jesse Dawson, W Brent Tarver, Seth A Hays

Abstract

Stroke is a leading cause of disability worldwide, and in approximately 60% of individuals, upper limb deficits persist 6 months after stroke. These deficits adversely affect the functional use of the upper limb and restrict participation in day to day activities. An important goal of stroke rehabilitation is to improve the quality of life by enhancing functional independence and participation in activities. Since upper limb deficits are one of the best predictors of quality of life after stroke, effective interventions targeting these deficits may represent a means to improve quality of life. An increased understanding of the neurobiological processes underlying stroke recovery has led to the development of targeted approaches to improve motor deficits. One such targeted strategy uses brief bursts of Vagus Nerve Stimulation (VNS) paired with rehabilitation to enhance plasticity and support recovery of upper limb function after chronic stroke. Stimulation of the vagus nerve triggers release of plasticity promoting neuromodulators, such as acetylcholine and norepinephrine, throughout the cortex. Timed engagement of neuromodulators concurrent with motor training drives task-specific plasticity in the motor cortex to improve function and provides the basis for paired VNS therapy. A number of studies in preclinical models of ischemic stroke demonstrated that VNS paired with rehabilitative training significantly improved the recovery of forelimb motor function compared to rehabilitative training without VNS. The improvements were associated with synaptic reorganization of cortical motor networks and recruitment of residual motor neurons controlling the impaired forelimb, demonstrating the putative neurobiological mechanisms underlying recovery of motor function. These preclinical studies provided the basis for conducting two multi-site, randomized controlled pilot trials in individuals with moderate to severe upper limb weakness after chronic ischemic stroke. In both studies, VNS paired with rehabilitation improved motor deficits compared to rehabilitation alone. The trials provided support for a 120-patient pivotal study designed to evaluate the efficacy of paired VNS therapy in individuals with chronic ischemic stroke. This manuscript will discuss the neurobiological rationale for VNS therapy, provide an in-depth discussion of both animal and human studies of VNS therapy for stroke, and outline the challenges and opportunities for the future use of VNS therapy.

Keywords: neuromodulation; plasticity; rehabilitation; stroke; vagus nerve stimulation.

Figures

FIGURE 1
FIGURE 1
Vagus Nerve Stimulation-dependent recovery of motor function in rat models of stroke. (A) VNS paired with rehabilitative training significantly improves recovery of forelimb motor function compared to equivalent training without VNS in a model of cortical ischemic stroke. The top panel shows a coronal brain section with a representative ischemic lesion. Similarly, VNS paired with rehabilitative training enhances recovery of forelimb function after (B) chronic combined cortical and subcortical ischemic and (C) intracerebral hemorrhage. The symbol “∗” indicates p < 0.05 across groups at each time point (Adapted from Hays et al., 2014a,b; Khodaparast et al., 2016).
FIGURE 2
FIGURE 2
Vagus Nerve Stimulation therapy improves recovery in a variety of models of neurological injury. A meta-analysis of recovery across a range of rat models of neurological damage demonstrates that VNS paired with rehabilitative training (VNS+Rehab) consistently improves recovery of forelimb motor function compared to equivalent rehabilitative training without VNS (Rehab Alone). The data are presented as a forest plot. Markers denote standardized mean difference for VNS+Rehab compared to Rehab Alone for each study, and horizontal lines indicate 95% confidence interval. The size of the indicator represents the number of subjects. The blue diamond represents the summary effect.
FIGURE 3
FIGURE 3
Vagus Nerve Stimulation paired with motor training enhances synaptic reorganization after stroke. Rats that receive VNS paired with motor training (red bar) after stroke demonstrated a significantly greater increase in corticospinal tract (CST) connectivity to rehabilitated muscles compared to equivalent training without VNS (blue bar). CST connectivity originating in both the ipsilesional and contralesional hemispheres was increased. These findings indicate that VNS drives large-scale reorganization in motor networks after stroke which may underlie recovery of function (Adapted from Meyers E.C. et al., 2018). ∗ indicates p < 0.05; ∗∗ indicates p < 0.01.
FIGURE 4
FIGURE 4
Vagus Nerve Stimulation paired with rehabilitation in the clinic and at home, (A) In-clinic rehabilitation with VNS: VNS is delivered by a therapist using a push button timed with a task-specific movement. Pressing the button delivers a brief burst of VNS (0.5 s) during an active goal-directed movement. The VNS system includes an implantable pulse generator (implanted device) that is implanted under the individual’s chest wall, an implantable lead, wireless transmitter (for communication between the device and computer) and custom programming software. (B) Home-based VNS therapy: Participants are provided a magnet (inset) to swipe over the device once before the start of each rehabilitation session to self-initiate 30 min of VNS (0.5 s burst of VNS every 10 s for 30 min). During the 30 min, participants performed at-home exercises prescribed by the therapist and adapted to their functional level and goals.
FIGURE 5
FIGURE 5
(A) Consort Diagram for the pilot study (from Kimberley et al., 2018). Twenty-two participants were enrolled in the study of which 17 were implanted. Eight participants were randomized to the VNS group and 9 to rehabilitation only (B). Clinical study flowchart. After screening and baseline evaluations, all participants were implanted with a VNS device and randomized to receive either Active (0.8 mA) or Control VNS (0.0 mA) paired with upper limb rehabilitation. Participants received 18 sessions of in-clinic therapy for 6 weeks, followed by a home-based therapy for 3 months (no VNS was delivered to either group during the 1st month of home therapy). The 3-month time point is referred to as Post-day 90. After Post-day 90, the Active VNS group continued with home-based Active VNS, and the Control group crossed over to receive 6-weeks of in-clinic therapy with Active VNS followed by home-based Active VNS, similar to the Active VNS+Rehab group. Outcome measures were evaluated at baseline, Post-day 1, Post-day 30, and Post-day 90.
FIGURE 6
FIGURE 6
(A) Fugl-Meyer assessment–upper extremity (Kimberley et al., 2018). Change in FMA-UE score at three posttreatment assessments from baseline for Active VNS (solid line) and Control VNS + Rehab (dashed line). Shaded area indicates 6 weeks of in-clinic therapy. Error bars indicated standard error of the mean (s.e.m). (B) FMA-UE responder rate (defined as FMA-UE change ≥6 points from baseline) for Active VNS (black) and Control VNS + Rehab (gray). ∗p < 0.05, Fisher exact test.

References

    1. Arnold H. M., Burk J. A., Hodgson E. M., Sarter M., Bruno J. P. (2002). Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience 114 451–460. 10.1016/S0306-4522(02)00292-0
    1. Aston-Jones G., Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28 403–450. 10.1146/annurev.neuro.28.061604.135709
    1. Auriat A. M., Wowk S., Colbourne F. (2010). Rehabilitation after intracerebral hemorrhage in rats improves recovery with enhanced dendritic complexity but no effect on cell proliferation. Behav. Brain Res. 214 42–47. 10.1016/j.bbr.2010.04.025
    1. Ay I., Lu J., Ay H., Gregory Sorensen A. (2009). Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia. Neurosci. Lett. 459 147–151. 10.1016/j.neulet.2009.05.018
    1. Ay I., Napadow V., Ay H. (2015). Electrical stimulation of the vagus nerve dermatome in the external ear is protective in rat cerebral ischemia. Brain Stimul. 8 7–12. 10.1016/j.brs.2014.09.009
    1. Badran B. W., Brown J. C., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., et al. (2018a). Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 11 947–948. 10.1016/j.brs.2018.06.003
    1. Badran B. W., Jenkins D. D., DeVries W. H., Dancy M., Summers P. M., Mappin G. M., et al. (2018b). Transcutaneous auricular vagus nerve stimulation (taVNS) for improving oromotor function in newborns. Brain Stimul. 11 1198–1200. 10.1016/j.brs.2018.06.009
    1. Bagg S., Pombo A. P., Hopman W. (2002). Effect of age on functional outcomes after stroke rehabilitation. Stroke 33 179–185. 10.1161/hs0102.101224
    1. Barbella G., Cocco I., Freri E., Marotta G., Visani E., Franceschetti S., et al. (2018). Transcutaneous vagal nerve stimulation (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 60 115–119. 10.1016/j.seizure.2018.06.016
    1. Bauer S., Baier H., Baumgartner C., Bohlmann K., Fauser S., Graf W., et al. (2016). Transcutaneous Vagus Nerve Stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 9 356–363. 10.1016/j.brs.2015.11.003
    1. Benjamin E. J., Virani S. S., Callaway C. W., Chamberlain A. M., Chang A. R., Cheng S., et al. (2018). Heart Disease and Stroke Statistics - 2018 Update: A Report from the. Dallas, TX: American Heart Association. 10.1161/CIR.0000000000000558
    1. Bohotin C., Scholsem M., Multon S., Martin D., Bohotin V., Schoenen J. (2003). Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain 101 3–12. 10.1016/S0304-3959(02)00301-9
    1. Bolognini N., Russo C., Edwards D. J. (2016). The sensory side of post-stroke motor rehabilitation. Restor. Neurol. Neurosci. 34 571–586. 10.3233/RNN-150606
    1. Boon P., Moors I., De Herdt V., Vonck K. (2006). Vagus nerve stimulation and cognition. Seizure 15 259–263. 10.1016/j.seizure.2006.02.014
    1. Borland M., Vrana W., Moreno N., Fogarty E. (2016). Cortical map plasticity as a function of vagus nerve stimulation intensity. Brain Stimul. 9 117–123. 10.1016/j.brs.2015.08.018
    1. Borland M. S., Engineer C. T., Vrana W. A., Moreno N. A., Engineer N. D., Vanneste S., et al. (2018). The interval between VNS-tone pairings determines the extent of cortical map plasticity. Neuroscience 369 76–86. 10.1016/j.neuroscience.2017.11.004
    1. Bouret S., Sara S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. Eur. J. Neurosci. 20 791–802. 10.1111/j.1460-9568.2004.03526.x
    1. Boyd L. A., Hayward K. S., Ward N. S., Stinear C. M., Rosso C., Fisher R. J., et al. (2017). Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Neurorehabil. Neural Repair 31 864–876. 10.1177/1545968317732680
    1. Buell E. P., Loerwald K. W., Engineer C. T., Borland M. S., Buell J. M., Kelly C. A., et al. (2018). Cortical map plasticity as a function of vagus nerve stimulation rate. Brain Stimul. 11 1218–1224. 10.1016/j.brs.2018.07.045
    1. Buonomano D. V., Merzenich M. M. (1998). Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21 149–186. 10.1146/annurev.neuro.21.1.149
    1. Burger A. M., Verkuil B. (2018). Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? Brain Stimul. 11 945–946. 10.1016/j.brs.2018.03.018
    1. Burke E., Cramer S. C. (2013). Biomarkers and predictors of restorative therapy effects after stroke. Curr. Neurol. Neurosci. Rep. 13:329. 10.1007/s11910-012-0329-9
    1. Burke S. N., Barnes C. A. (2006). Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7 30–40. 10.1038/nrn1809
    1. Canning C. G., Ada L., Adams R., O’Dwyer N. J. (2004). Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clin. Rehabil. 18 300–308. 10.1191/0269215504cr715oa
    1. Capone F., Miccinilli S., Pellegrino G., Zollo L., Simonetti D., Bressi F., et al. (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plast 2017:7876507. 10.1155/2017/7876507
    1. Carcea I., Froemke R. C. (2013). Cortical plasticity, excitatory–inhibitory balance, and sensory perception. Prog. Brain Res. 2013 65–90. 10.1016/B978-0-444-63327-9.00003-5
    1. Castoro M. A., Yoo P. B., Hincapie J. G., Hamann J. J., Ruble S. B., Wolf P. D., et al. (2011). Excitation properties of the right cervical vagus nerve in adult dogs. Exp. Neurol. 227 62–68. 10.1016/j.expneurol.2010.09.011
    1. Chae J.-H., Nahas Z., Lomarev M., Denslow S., Lorberbaum J. P., Bohning D. E., et al. (2003). A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J. Psychiatr. Res. 37 443–455. 10.1016/S0022-3956(03)00074-8
    1. Clark K. B., Krahl S. E., Smith D. C., Jensen R. A. (1995). Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol. Learn. Mem. 63 213–216. 10.1006/nlme.1995.1024
    1. Clark K. B., Naritoku D. K., Smith D. C., Browning R. A., Jensen R. A. (1999). Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat. Neurosci. 2 94–98. 10.1038/4600
    1. Clark K. B., Smith D. C., Hassert D. L., Browning R. A., Naritoku D. K., Jensen R. A. (1998). Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol. Learn. Mem. 70 364–373. 10.1006/nlme.1998.3863
    1. Cohen M. R., Maunsell J. H. R. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12 1594–1600. 10.1038/nn.2439
    1. Conner J. M., Chiba A. A., Tuszynski M. H. (2005). The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 46 173–179. 10.1016/j.neuron.2005.03.003
    1. Conner J. M., Culberson A., Packowski C., Chiba A. A., Tuszynski M. H. (2003). Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38 819–829. 10.1016/S0896-6273(03)00288-5
    1. Contreras R. J., Beckstead R. M., Norgren R. (1982). The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J. Auton. Nerv. Syst. 6 303–322. 10.1016/0165-1838(82)90003-0
    1. Convento S., Bolognini N., Fusaro M., Lollo F., Vallar G. (2014). Neuromodulation of parietal and motor activity affects motor planning and execution. Cortex 57 51–59. 10.1016/j.cortex.2014.03.006
    1. Coyle J. T., Price D. L., DeLong M. R. (1983). Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219 1184–1190. 10.1126/science.6338589
    1. Dan Y., Poo M. (2004). Spike timing-dependent plasticity of neural circuits. Neuron 44 23–30. 10.1016/j.neuron.2004.09.007
    1. Dawson J., Pierce D., Dixit A., Kimberley T. J., Robertson M., Tarver B., et al. (2016). Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47 143–150. 10.1161/STROKEAHA.115.010477
    1. De Cicco V., Tramonti Fantozzi M. P., Cataldo E., Barresi M., Bruschini L., Faraguna U., et al. (2018). Trigeminal, visceral and vestibular inputs may improve cognitive functions by acting through the locus coeruleus and the ascending reticular activating system: a new hypothesis. Front. Neuroanat. 11:130. 10.3389/fnana.2017.00130
    1. Dimyan M. A., Cohen L. G. (2011). Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7 76–85. 10.1038/nrneurol.2010.200
    1. Donoghue J. P., Sanes J. N. (1987). Peripheral nerve injury in developing rats reorganizes representation pattern in motor cortex. Proc. Natl. Acad. Sci. U.S.A. 84 1123–1126. 10.1073/pnas.84.4.1123
    1. Du H. J., Zhou S. Y. (1990). Involvement of solitary tract nucleus in control of nociceptive transmission in cat spinal cord neurons. Pain 40 323–331. 10.1016/0304-3959(90)91129-7
    1. Elbert T., Pantev C., Wienbruch C., Rockstroh B., Taub E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science 270 305–307. 10.1126/science.270.5234.305
    1. Engineer N. D., Riley J. R., Seale J. D., Vrana W. A., Shetake J. A., Sudanagunta S. P., et al. (2011). Reversing pathological neural activity using targeted plasticity. Nature 470 101–106. 10.1038/nature09656
    1. Feigin V. L., Roth G. A., Naghavi M., Parmar P., Krishnamurthi R., Chugh S., et al. (2016). Global burden of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 15 913–924. 10.1016/S1474-4422(16)30073-4
    1. Feldman D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32 33–55. 10.1146/annurev.neuro.051508.135516
    1. Feldman D. E., Brecht M. (2005). Map plasticity in somatosensory cortex. Science 310 810–815. 10.1126/science.1115807
    1. Foley J. O., DuBois F. S. (1937). Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. J. Comp. Neurol. 67 49–67. 10.1002/cne.900670104
    1. Follesa P., Biggio F., Gorini G., Caria S., Talani G., Dazzi L., et al. . (2007). Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179 28–34. 10.1016/j.brainres.2007.08.045
    1. Franceschini M., La Porta F., Agosti M., Massucci M. (2010). Is health-related-quality of life of stroke patients influenced by neurological impairments at one year after stroke? Eur. J. Phys. Rehabil. Med. 46 389–399.
    1. Frangos E., Ellrich J., Komisaruk B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 8 624–636. 10.1016/j.brs.2014.11.018
    1. Frangos E., Komisaruk B. R. (2017). Access to vagal projections via cutaneous electrical stimulation of the neck: fMRI evidence in healthy humans. Brain Stimul. 10 19–27. 10.1016/j.brs.2016.10.008
    1. Freitas C., Perez J., Knobel M., Tormos J. M., Oberman L., Eldaief M., et al. (2011). Changes in cortical plasticity across the lifespan. Front. Aging Neurosci. 3:5 10.3389/fnagi.2011.00005
    1. Froemke R. C. (2015). Plasticity of cortical excitatory-inhibitory balance. Annu. Rev. Neurosci. 38 195–219. 10.1146/annurev-neuro-071714-034002
    1. Gainetdinov R. R., Premont R. T., Bohn L. M., Lefkowitz R. J., Caron M. G. (2004). Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27 107–144. 10.1146/annurev.neuro.27.070203.144206
    1. Ganzer P. D., Darrow M. J., Meyers E. C., Solorzano B. R., Ruiz A. D., Robertson N. M., et al. (2018). Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury. eLife 7:e32058. 10.7554/eLife.32058
    1. Gesi M., Soldani P., Giorgi F. S., Santinami A., Bonaccorsi I., Fornai F. (2000). The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci. Biobehav. Rev. 24 655–668. 10.1016/S0149-7634(00)00028-2
    1. Ghacibeh G. A., Shenker J. I., Shenal B., Uthman B. M., Heilman K. M. (2006). The influence of vagus nerve stimulation on memory. Cogn. Behav. Neurol. 19 119–122. 10.1097/01.wnn.0000213908.34278.7d
    1. Goadsby P. J., de Coo I. F., Silver N., Tyagi A., Ahmed F., Gaul C., et al. (2018). Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia 38 959–969. 10.1177/0333102417744362
    1. Grazzi L., Tassorelli C., de Tommaso M., Pierangeli G., Martelletti P., Rainero I., et al. (2018). Practical and clinical utility of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: a post hoc analysis of the randomized, sham-controlled, double-blind PRESTO trial. J. Headache Pain 19:98. 10.1186/s10194-018-0928-1
    1. Gu Q. (2002). Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111 815–835. 10.1016/S0306-4522(02)00026-X
    1. Hangya B., Ranade S. P., Lorenc M., Kepecs A. (2015). Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162 1155–1168. 10.1016/j.cell.2015.07.057
    1. Harris J. E., Eng J. J. (2007). Paretic upper-limb strength best explains arm activity in people with stroke. Phys. Ther. 87 88–97. 10.2522/ptj.20060065
    1. Hasan M. T., Hernández-González S., Dogbevia G., Treviño M., Bertocchi I., Gruart A., et al. (2013). Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice. Nat. Commun. 4:2258. 10.1038/ncomms3258
    1. Hasselmo M. E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67 1–27. 10.1016/0166-4328(94)00113-T
    1. Hasselmo M. E., Sarter M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36 52–73. 10.1038/npp.2010.104
    1. Hays S. A. (2016). Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics 13 382–394. 10.1007/s13311-015-0417-z
    1. Hays S. A., Khodaparast N., Hulsey D. R., Ruiz A., Sloan A. M., Rennaker R. L., et al. (2014a). Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 45 3097–3100. 10.1161/STROKEAHA.114.006654
    1. Hays S. A., Khodaparast N., Ruiz A., Sloan A. M., Hulsey D. R., Rennaker R. L., et al. (2014b). The timing and amount of vagus nerve stimulation during rehabilitative training affect poststroke recovery of forelimb strength. Neuroreport 25 676–682. 10.1097/WNR.0000000000000154
    1. Hays S. A., Khodaparast N., Sloan A. M., Fayyaz T., Hulsey D. R., Ruiz A. D., et al. (2013). The bradykinesia assessment task: an automated method to measure forelimb speed in rodents. J. Neurosci. Methods 214 52–61. 10.1016/j.jneumeth.2012.12.022
    1. Hays S. A., Ruiz A., Bethea T., Khodaparast N., Carmel J. B., Rennaker R. L., II, et al. (2016). Vagus Nerve Stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol. Aging 43 111–118. 10.1016/j.neurobiolaging.2016.03.030
    1. He K., Huertas M., Hong S. Z., Tie X. X., Hell J. W., Shouval H., et al. (2015). Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88 528–538. 10.1016/j.neuron.2015.09.037
    1. Henssen D. J. H. A., Derks B., van Doorn M., Verghoot N., van Walsum A.-M. V. C., Staats P., et al. (2019). Vagus nerve stimulation for primary headache disorders: An anatomical review to explain a clinical phenomenon. Cephalalgia 1–5. 10.1177/0333102419833076
    1. Heron C., Gould T. J., Bickford P. (1996). Acquisition of a runway motor learning task is impaired by a beta adrenergic antagonist in F344 rats. Behav. Brain Res. 78 235–241. 10.1016/0166-4328(95)00252-9
    1. Hess G., Donoghue J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J. Neurophysiol. 71 2543–2547. 10.1152/jn.1994.71.6.2543
    1. Hess G., Krawczyk R. (1996). Cholinergic modulation of synaptic transmission in horizontal connections of rat motor cortex. Acta Neurobiol. Exp. 56 863–872.
    1. Hoppe C., Helmstaedter C., Scherrmann J., Elger C. E. (2001). No evidence for cognitive side effects after 6 months of vagus nerve stimulation in epilepsy patients. Epilepsy Behav. 2 351–356. 10.1006/ebeh.2001.0219
    1. Hulsey D. R. (2018). Neuromodulatory Pathways Required for Targeted Plasticity Therapy. Doctoral dissertation, The University of Texas at Dallas; Richardson, TX.
    1. Hulsey D. R., Hays S. A., Khodaparast N., Ruiz A., Das P., Rennaker R. L., et al. (2016). Reorganization of motor cortex by vagus nerve stimulation requires cholinergic innervation. Brain Stimul. 9 174–181. 10.1016/j.brs.2015.12.007
    1. Hulsey D. R., Riley J. R., Loerwald K. W., Rennaker R. L., Kilgard M. P., Hays S. A. (2017). Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289 21–30. 10.1016/j.expneurol.2016.12.005
    1. Juliano S. L., Ma W., Eslin D. (1991). Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. Proc. Natl. Acad. Sci. U.S.A. 88 780–784. 10.1073/pnas.88.3.780
    1. Kelly-Hayes M., Beiser A., Kase C. S., Scaramucci A., D’Agostino R. B., Wolf P. A. (2003). The influence of gender and age on disability following ischemic stroke: the Framingham study. J. Stroke Cerebrovasc. Dis. 12 119–126. 10.1016/S1052-3057(03)00042-9
    1. Khodaparast N., Hays S. A., Sloan A. M., Fayyaz T., Hulsey D. R., Rennaker R. L., et al. (2014). Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehabil. Neural Repair 28 698–706. 10.1177/1545968314521006
    1. Khodaparast N., Hays S. A., Sloan A. M., Hulsey D. R., Ruiz A., Pantoja M., et al. (2013). Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol. Dis. 60 80–88. 10.1016/j.nbd.2013.08.002
    1. Khodaparast N., Kilgard M. P., Casavant R., Ruiz A., Qureshi I., Ganzer P. D., et al. (2016). Vagus nerve stimulation during rehabilitative training improves forelimb recovery after chronic ischemic stroke in rats. Neurorehabil. Neural Repair 30 676–684. 10.1177/1545968315616494
    1. Kilgard M. P., Merzenich M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science 279 1714–1718. 10.1126/science.279.5357.1714
    1. Kilgard M. P., Rennaker R. L., Alexander J., Dawson J. (2018). Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. Neurorehabilitation 42 159–165. 10.3233/NRE-172273
    1. Kimberley T. J., Pierce D., Prudente C. N., Francisco G. E., Yozbatiran N., Smith P., et al. (2018). Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke. Stroke 49 2789–2792. 10.1161/STROKEAHA.118.022279
    1. Kirkwood A., Rozas C., Kirkwood J., Perez F., Bear M. F. (1999). Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J. Neurosci. 19 1599–1609. 10.1523/JNEUROSCI.19-05-01599.1999
    1. Kleim J. A., Jones T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51 S225–S239. 10.1044/1092-4388(2008/018)
    1. Korchounov A., Ziemann U. (2011). Neuromodulatory neurotransmitters influence LTP-Like plasticity in human cortex: a pharmaco-TMS study. Neuropsychopharmacology 36 1894–1902. 10.1038/npp.2011.75
    1. Krakauer J. W. (2004). Functional imaging of motor recovery after stroke: remaining challenges. Curr. Neurol. Neurosci. Rep. 4 42–46. 10.1007/s11910-004-0010-z
    1. Kraus T., Hösl K., Kiess O., Schanze A., Kornhuber J., Forster C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 114 1485–1493. 10.1007/s00702-007-0755-z
    1. Kwon Y., Kang M., Ahn C., Han H., Ahn B., Lee J. (2000). Effect of high or low frequency electroacupuncture on the cellular activity of catecholaminergic neurons in the brain stem. Acupunct. Electrother. Res. 25 27–36. 10.3727/036012900816356235
    1. Kwon Y. H., Jang S. H. (2010). Cortical activation pattern in hemiparetic patients with pontine infarct. Eur. Neurol. 64 9–14. 10.1159/000313976
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8 741–754. 10.1016/S1474-4422(09)70150-4
    1. Lewis J. W., Baldrighi G., Akil H. (1987). A possible interface between autonomic function and pain control: opioid analgesia and the nucleus tractus solitarius. Brain Res. 424 65–70. 10.1016/0006-8993(87)91193-0
    1. Liang H., Yin Y., Lin T., Guan D., Ma B., Li C., et al. (2013). Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol. Cells 36 17–24. 10.1007/s10059-013-2306-9
    1. Liu K., Gao X.-Y., Li L., Ben H., Qin Q.-G., Zhao Y.-X., et al. (2014). Neurons in the nucleus tractus solitarius mediate the acupuncture analgesia in visceral pain rats. Auton. Neurosci. 186 91–94. 10.1016/j.autneu.2014.08.004
    1. Loerwald K. W., Borland M. S., Rennaker R. L., Hays S. A., Kilgard M. P. (2017). The interaction of pulse width and current intensity on the extent of cortical plasticity evoked by vagus nerve stimulation. Brain Stimul. 11 271–277. 10.1016/j.brs.2017.11.007
    1. Lui S. K., Nguyen M. H. (2018). Elderly stroke rehabilitation: overcoming the complications and its associated challenges. Curr. Gerontol. Geriatr. Res. 2018:9853837. 10.1155/2018/9853837
    1. Magdaleno-Madrigal V. M., Martínez-Vargas D., Valdés-Cruz A., Almazán-Alvarado S., Fernández-Mas R. (2010). Preemptive effect of nucleus of the solitary tract stimulation on amygdaloid kindling in freely moving cats. Epilepsia 51 438–444. 10.1111/j.1528-1167.2009.02337.x
    1. Magis D., Allena M., Bolla M., De Pasqua V., Remacle J.-M., Schoenen J. (2007). Occipital nerve stimulation for drug-resistant chronic cluster headache: a prospective pilot study. Lancet Neurol. 6 314–321. 10.1016/S1474-4422(07)70058-3
    1. Magis D., Sava S., d’Elia T. S., Baschi R., Schoenen J. (2013). Safety and patients’ satisfaction of transcutaneous Supraorbital NeuroStimulation (tSNS) with the Cefaly®device in headache treatment: a survey of 2,313 headache sufferers in the general population. J. Headache Pain 14:95. 10.1186/1129-2377-14-95
    1. Manta S., Dong J., Debonnel G., Blier P. (2009). Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 34 272–280.
    1. Manta S., El Mansari M., Blier P. (2012). Novel attempts to optimize vagus nerve stimulation parameters on serotonin neuronal firing activity in the rat brain. Brain Stimul. 5 422–429. 10.1016/j.brs.2011.04.005
    1. Masiero S., Celia A., Rosati G., Armani M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88 142–149. 10.1016/j.apmr.2006.10.032
    1. Mercante B., Enrico P., Floris G., Quartu M., Boi M., Serra M. P., et al. (2017). Trigeminal nerve stimulation induces Fos immunoreactivity in selected brain regions, increases hippocampal cell proliferation and reduces seizure severity in rats. Neuroscience 361 69–80. 10.1016/j.neuroscience.2017.08.012
    1. Merzenich M. M., Recanzone G. H., Jenkind W. M., Allard T. T., Nudo R. J. (1988). “Cortical representational plasticity,” in Neurobiology Neocortex eds Rakic P., Singer W. (Hoboken, NJ: John Wiley & Sons Limited; ) 41–67. 10.1152/jn.00493.2013
    1. Meyers E., Kasliwal N., Lai E., Romero-Ortega M., Rennaker R., Kilgard M., et al. (2018). Restoring Central Networks Improves Motor and Sensory Function After Nerve Damage. in Society for Neuroscience. Available at: [accessed October 29 2018].
    1. Meyers E. C., Solorzano B. R., James J., Ganzer P. D., Lai E. S., Rennaker R. L., et al. (2018). Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke 49 710–717. 10.1161/STROKEAHA.117.019202
    1. Milot M.-H., Cramer S. C. (2008). Biomarkers of recovery after stroke. Curr. Opin. Neurol. 21 654–659. 10.1097/WCO.0b013e3283186f96
    1. Moeller M., Schroeder C. F., May A. (2018). Vagus nerve stimulation modulates the cranial trigeminal autonomic reflex. Ann. Neurol. 84 886–892. 10.1002/ana.25366
    1. Mollet L., Raedt R., Delbeke J., El Tahry R., Grimonprez A., Dauwe I., et al. (2013). Electrophysiological responses from vagus nerve stimulation in rats. Int. J. Neural Syst. 23:1350027. 10.1142/S0129065713500275
    1. Morris J. H., Van Wijck F., Joice S., Donaghy M. (2013). Predicting health related quality of life 6 months after stroke: the role of anxiety and upper limb dysfunction. Disabil. Rehabil. 35 291–299. 10.3109/09638288.2012.691942
    1. Murphy T. H., Corbett D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10 861–872. 10.1038/nrn2735
    1. Murray C. J. L., Atkinson C., Bhalla K., Birbeck G., Burstein R., Chou D., et al. (2013). The state of US health, 1990-2010. JAMA 310 591–608. 10.1001/jama.2013.13805
    1. Narayan Arya K., Verma R., Garg R. K. (2011). Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. Top. Stroke Rehabil. 18 599–610. 10.1310/tsr18s01-599
    1. Nichols J. A., Nichols A. R., Smirnakis S. M., Engineer N. D., Kilgard M. P., Atzori M. (2011). Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 189 207–214. 10.1016/j.neuroscience.2011.05.024
    1. Nudo R. J. (2006). Mechanisms for recovery of motor function following cortical damage. Curr. Opin. Neurobiol. 16 638–644. 10.1016/j.conb.2006.10.004
    1. Nudo R. J., Friel K. M., Delia S. W. (2000). Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology 39 733–742. 10.1016/S0028-3908(99)00254-3
    1. Page S. J., Fulk G. D., Boyne P. (2012). Clinically important differences for the upper-extremity fugl-meyer scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 92 791–798. 10.2522/ptj.20110009
    1. Parikh V., Kozak R., Martinez V., Sarter M. (2007). Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56 141–154. 10.1016/j.neuron.2007.08.025
    1. Pascual-Leone A., Torres F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116(Pt 1) 39–52. 10.1093/brain/116.1.39
    1. Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15 35–37. 10.1002/ca.1089
    1. Ploughman M., Windle V., McAllen C. L., White N., Dore J. J., Corbett D. (2009). Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40 1490–1495. 10.1161/STROKEAHA.108.531806
    1. Porter B. A., Khodaparast N., Fayyaz T., Cheung R. J., Ahmed S. S., Vrana W. A., et al. (2012). Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb. Cortex 22 2365–2374. 10.1093/cercor/bhr316
    1. Prechtl J. C., Powley T. L. (1990). The fiber composition of the abdominal vagus of the rat. Anat. Embryol. 181 101–115. 10.1007/BF00198950
    1. Pruitt D. T., Schmid A. N., Kim L. J., Abe C. M., Trieu J. L., Choua C., et al. (2016). Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J. Neurotrauma 33 871–879. 10.1089/neu.2015.3972
    1. Ramanathan D., Tuszynski M. H., Conner J. M. (2009). The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J. Neurosci. 29 5992–6000. 10.1523/JNEUROSCI.0230-09.2009
    1. Recanzone G. H., Merzenich M. M., Jenkins W. M., Grajski K. A., Dinse H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67 1031–1056. 10.1152/jn.1992.67.5.1031
    1. Recanzone G. H., Schreiner C. E., Merzenich M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13 87–103. 10.1523/JNEUROSCI.13-01-00087.1993
    1. Redgrave J. N., Moore L., Oyekunle T., Ebrahim M., Falidas K., Snowdon N., et al. (2018). Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: a pilot study. J. Stroke Cerebrovasc. Dis. 27 1998–2005. 10.1016/j.jstrokecerebrovasdis.2018.02.056
    1. Rioult-Pedotti M. S., Friedman D., Donoghue J. P. (2000). Learning-induced LTP in neocortex. Science 290 533–536. 10.1126/science.290.5491.533
    1. Roosevelt R. W., Smith D. C., Clough R. W., Jensen R. A., Browning R. A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119 124–132. 10.1016/j.brainres.2006.08.048
    1. Rouzade-Dominguez M. L., Curtis A. L., Valentino R. J. (2001). Role of Barrington’s nucleus in the activation of rat locus coeruleus neurons by colonic distension. Brain Res. 917 206–218. 10.1016/S0006-8993(01)02917-1
    1. Safi S., Ellrich J., Neuhuber W. (2016). Myelinated axons in the auricular branch of the human vagus nerve. Anat. Rec. 299 1184–1191. 10.1002/ar.23391
    1. Salgado H., Köhr G., Treviño M. (2012). Noradrenergic ‘Tone’ determines dichotomous control of cortical spike-timing-dependent plasticity. Sci. Rep. 2:417. 10.1038/srep00417
    1. Sampaio-Baptista C., Sanders Z.-B., Johansen-Berg H. (2018). Structural plasticity in adulthood with motor learning and stroke rehabilitation. Annu. Rev. Neurosci. 41 25–40. 10.1146/annurev-neuro-080317-062015
    1. Santos M. V., Pagnussat A. S., Mestriner R. G., Netto C. A. (2013). Motor skill training promotes sensorimotor recovery and increases microtubule-associated protein-2 (MAP-2) immunoreactivity in the motor cortex after intracerebral hemorrhage in the rat. ISRN Neurol. 2013:159184. 10.1155/2013/159184
    1. Saper J. R., Dodick D. W., Silberstein S. D., McCarville S., Sun M., Goadsby P. J. (2011). Occipital nerve stimulation for the treatment of intractable chronic migraine headache: ONSTIM feasibility study. Cephalalgia 31 271–285. 10.1177/0333102410381142
    1. Saposnik G., Cote R., Phillips S., Gubitz G., Bayer N., Minuk J., et al. (2008). Stroke outcome in those over 80. Stroke 39 2310–2317. 10.1161/STROKEAHA.107.511402
    1. Sarter M., Gehring W. J., Kozak R. (2006). More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51 145–160. 10.1016/j.brainresrev.2005.11.002
    1. Sarter M., Hasselmo M. E., Bruno J. P., Givens B. (2005). Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Rev. 48 98–111. 10.1016/j.brainresrev.2004.08.006
    1. Sarter M., Parikh V., Howe W. M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. 10 383–390. 10.1038/nrn2635
    1. Sato H., Hata Y., Masui H., Tsumoto T. (1987). A functional role of cholinergic innervation to neurons in the cat visual cortex. J. Neurophysiol. 58 765–780. 10.1152/jn.1987.58.4.765
    1. Schabitz W.-R., Berger C., Kollman R., Seitz M., Tanay E., Kiessling M., et al. . (2004). Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35 992–997. 10.1161/01.STR.0000119754.85848.0D
    1. Scherder E. J. A., Luijpen M. W., van Dijk K. R. A. (2003). Activation of the dorsal raphe nucleus and locus coeruleus by transcutaneous electrical nerve stimulation in Alzheimer’s disease: a reconsideration of stimulation-parameters derived from animal studies. Chin. J. Physiol. 46 143–150.
    1. Seol G. H., Ziburkus J., Huang S., Song L., Kim I. T., Takamiya K., et al. (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55 919–929. 10.1016/j.neuron.2007.08.013
    1. Shelton F. D., Volpe B. T., Reding M. (2001). Motor impairment as a predictor of functional recovery and guide to rehabilitation treatment after stroke. Neurorehabil. Neural Repair 15 229–237. 10.1177/154596830101500311
    1. Silberstein S. D., Mechtler L. L., Kudrow D. B., Calhoun A. H., McClure C., Saper J. R., et al. (2016). Non-invasive vagus nerve stimulation for the ACute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56 1317–1332. 10.1111/head.12896
    1. Sterr A., Müller M. M., Elbert T., Rockstroh B., Pantev C., Taub E. (1998). Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J. Neurosci. 18 4417–4423. 10.1523/JNEUROSCI.18-11-04417.1998
    1. Sun L., Peräkylä J., Holm K., Haapasalo J., Lehtimäki K., Ogawa K. H., et al. (2017). Vagus nerve stimulation improves working memory performance. J. Clin. Exp. Neuropsychol. 39 954–964. 10.1080/13803395.2017.1285869
    1. Tassorelli C., Grazzi L., de Tommaso M., Pierangeli G., Martelletti P., Rainero I., et al. (2018). Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study. Neurology 91 e364–e373. 10.1212/WNL.0000000000005857
    1. Tatemichi T. K., Desmond D. W., Stern Y., Paik M., Sano M., Bagiella E. (1994). Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. J. Neurol. Neurosurg. Psychiatry 57 202–207. 10.1136/jnnp.57.2.202
    1. Teasell R., Foley N., Salter K., Richardson M., Mbbs N. H., Bhogal S., et al. (2014). Evidence-Based Review of Stroke Rehabilitation 16th Edn. Ontario: Heart and Stroke Foundation; 1–35. 10.1111/j.2044-8341.1998.tb00988.x
    1. Usher M., Cohen J. D., Servan-Schreiber D., Rajkowski J., Aston-Jones G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science 283 549–554. 10.1126/science.283.5401.549
    1. van der Lee J. H., Wagenaar R. C., Lankhorst G. J., Vogelaar T. W., Devillé W. L., Bouter L. M. (1999). Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 30 2369–2375. 10.1161/01.STR.30.11.2369
    1. Vitrac C., Benoit-Marand M. (2017). Monoaminergic modulation of motor cortex function. Front. Neural Circuits 11:72. 10.3389/fncir.2017.00072
    1. Wade D. T., Langton-Hewer R., Wood V. A., Skilbeck C. E., Ismail H. M. (1983). The hemiplegic arm after stroke: measurement and recovery. J. Neurol. Neurosurg. Psychiatry 46 521–524. 10.1136/jnnp.46.6.521
    1. Ward N. S. (2004). Functional reorganization of the cerebral motor system after stroke. Curr. Opin. Neurol. 17 725–730. 10.1097/00019052-200412000-00013
    1. Whitehouse P. J., Price D. L., Clark A. W., Coyle J. T., DeLong M. R. (1981). Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10 122–126. 10.1002/ana.410100203
    1. Wu J., Quinlan E. B., Dodakian L., McKenzie A., Kathuria N., Zhou R. J., et al. (2015). Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 138 2359–2369. 10.1093/brain/awv156
    1. Xerri C., Merzenich M. M., Peterson B. E., Jenkins W. (1998). Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J. Neurophysiol. 79 2119–2148. 10.1152/jn.1998.79.4.2119
    1. Yakunina N., Kim S. S., Nam E. C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20 290–300. 10.1111/ner.12541
    1. Zarow C., Lyness S. A., Mortimer J. A., Chui H. C. (2003). Neuronal loss is greater in the locus coeruleus than nucleus basalis and Substantia nigra in alzheimer and Parkinson diseases. Arch. Neurol. 60 337–341. 10.1001/archneur.60.3.337
    1. Zerari-Mailly F., Buisseret P., Buisseret-Delmas C., Nosjean A. (2005). Trigemino-solitarii-facial pathway in rats. J. Comp. Neurol. 487 176–189. 10.1002/cne.20554
    1. Zhu X. O., Waite P. M. (1998). Cholinergic depletion reduces plasticity of barrel field cortex. Cereb. Cortex 8 63–72. 10.1093/cercor/8.1.63
    1. Ziemann U., Meintzschel F., Korchounov A., Ilić T. V. (2006). Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil. Neural Repair 20 243–251. 10.1177/1545968306287154
    1. Zmarowski A., Sarter M., Bruno J. P. (2005). NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. Eur. J. Neurosci. 22 1731–1740. 10.1111/j.1460-9568.2005.04333.x

Source: PubMed

3
S'abonner