Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence

Susanna Esposito, Manuel E Soto-Martinez, Wojciech Feleszko, Marcus H Jones, Kun-Ling Shen, Urs B Schaad, Susanna Esposito, Manuel E Soto-Martinez, Wojciech Feleszko, Marcus H Jones, Kun-Ling Shen, Urs B Schaad

Abstract

Purpose of review: To provide an overview of the mechanistic and clinical evidence for the use of nonspecific immunomodulators in paediatric respiratory tract infection (RTI) and wheezing/asthma prophylaxis.

Recent findings: Nonspecific immunomodulators have a long history of empirical use for the prevention of RTIs in vulnerable populations, such as children. The past decade has seen an increase in both the number and quality of studies providing mechanistic and clinical evidence for the prophylactic potential of nonspecific immunomodulators against both respiratory infections and wheezing/asthma in the paediatric population. Orally administered immunomodulators result in the mounting of innate and adaptive immune responses to infection in the respiratory mucosa and anti-inflammatory effects in proinflammatory environments. Clinical data reflect these mechanistic effects in reductions in the recurrence of respiratory infections and wheezing events in high-risk paediatric populations. A new generation of clinical studies is currently underway with the power to position the nonspecific bacterial lysate immunomodulator OM-85 as a potential antiasthma prophylactic.

Summary: An established mechanistic and clinical role for prophylaxis against paediatric respiratory infections by nonspecific immunomodulators exists. Clinical trials underway promise to provide high-quality data to establish whether a similar role exists in wheezing/asthma prevention.

Figures

Box 1
Box 1
no caption available
FIGURE 1
FIGURE 1
The gut–lung immune axis illustrating points of immunomodulator activity in RTI prophylaxis. B, B cell; GALT, gut-associated immune tissue; Mc, macrophage; Mo, monocyte; NK, natural killer cell; PAMPS, pathogen-associated molecular patterns; PC plasma cell; PMN, polymorphonuclear neutrophil; PPs, Peyer's patches; T, T cell. Based on [10].

References

    1. Schroeck JL, Ruh CA, Sellick JA, Jr, et al. Factors associated with antibiotic misuse in outpatient treatment for upper respiratory tract infections. Antimicrob Agents Chemother 2015; 59:3848–3852.
    1. Gonzales R, Steiner JF, Sande MA. Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. JAMA 1997; 278:901–904.
    1. Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med 2015; 372:835–845.
    1. Toivonen L, Karppinen S, Schuez-Havupalo L, et al. Burden of recurrent respiratory tract infections in children: a prospective cohort study. Pediatr Infect Dis J 2016; 35:e362–e369.
    1. Schaad UB, Esposito S, Razi CH. Diagnosis and management of recurrent respiratory tract infections in children: a practical guide. Arch Pediatr Infect Dis 2016; 4:1–10.
    2. Recent review discussing the place of immunomodulators in the management of recurrent respiratory tract infections.

    1. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 2015; 282:20143085.
    1. Busse WW, Lemanske RF, Gern JE. The role of viral respiratory infections in asthma and asthma exacerbations. Lancet 2010; 376:826–834.
    1. Del-Rio-Navarro BE, Espinosa-Rosales FJ, Flenady V, Sienra-Monge JJL. Immunostimulants for preventing respiratory tract infection in children. Evid Based Child Health 2012; 7:629–717.
    2. Meta-analysis of the efficacy of available immunomodulators in children with recurrent respiratory tract infections.

    1. Greenberg HB, Piedra PA. Immunization against viral respiratory disease: a review. Pediatr Infect Dis J 2004; 23:S254–S261.
    1. Kiyono H, Fukuyama S. NALT- versus Peyer's-patch-mediated mucosal immunity. Nat Rev Immunol 2004; 4:699–710.
    1. Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc 2015; 12 (Suppl 2):S150–S156.
    1. Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Ann Allergy Asthma Immunol 2015; 114:364–369.
    1. Spisek R, Brazova J, Rozkova D, et al. Maturation of dendritic cells by bacterial immunomodulators. Vaccine 2004; 22:2761–2768.
    1. Parola C, Salogni L, Vaira X, et al. Selective activation of human dendritic cells by OM-85 through a NF-kB and MAPK dependent pathway. PLoS One 2013; 8:e82867.
    1. Pasquali C, Salami O, Taneja M, et al. Enhanced mucosal antibody production and protection against respiratory infections following an orally administered bacterial extract. Front Med 2014; 1:41.
    2. Preclinical study covering a number of aspects of the immune response, in particular the effects of immunomodulation on adaptive immune response to bacterial/viral super-infection.

    1. Dang AT, Pasquali C, Ludigs K, Guarda G. OM-85 is an immunomodulator of interferon-β production and inflammasome activity. Sci Rep 2017; 7:43844.
    2. Key mechanistic study showing evidence of both the anti-infective and anti-inflammatory actions of OM-85.

    1. Manolova V, Flace A, Jeandet P, et al. Biomarkers induced by the immunomodulatory bacterial extract OM-85: unique roles for Peyer's patches and intestinal epithelial cells. J Clin Cell Immunol 2017; 8:494.
    1. Huber M, Mossmann H, Bessler WG. Th1-orientated immunological properties of the bacterial extract OM-85-BV. Eur J Med Res 2005; 10:209–217.
    1. Luan H, Zhang Q, Wang L, et al. OM-85-BV induced the productions of IL-1 beta, IL-6, and TNF-alpha via TLR4-and TLR2-mediated ERK1/2/NF-kappa B pathway in RAW264.7 cells. J Interfer Cytok Res 2014; 34:526–536.
    1. Liao JY, Zhang T. Influence of OM-85 BV on hBD-1 and immunoglobulin in children with asthma and recurrent respiratory tract infection. Zhongguo Dang Dai Er Ke Za Zhi 2014; 16:508–512.
    1. Roth M, Pasquali C, Stolz D, Tamm M. Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP. PLoS One 2017; 12:e0188010.
    2. Mechanistic study showing the stimulation of innate antiviral activity by OM-85 at the level of the lung epithelium.

    1. Zelle-Rieser C, Ramoner R, Bartsch G, Thurnher M. A clinically approved oral vaccine against pneumotropic bacteria induces the terminal maturation of CD83(+) immunostimulatory dendritic cells. Immunol Lett 2001; 76:63–67.
    1. Roth M, Block LH. Distinct effects of Broncho-Vaxom (OM-85 BV) on gp130 binding cytokines. Thorax 2000; 55:678–684.
    1. Gu S, Wu C, Xie G. Efficacy of bacterial lysates in the adjuvant therapy for children with recurrent respiratory tract infections. Chin J Pract Pediatr 2015; 30:207–210.
    1. Bowman LM, Holt PG. Selective enhancement of systemic Th1 immunity in immunologically immature rats with an orally administered bacterial extract. Infect Immun 2001; 69:3719–3727.
    1. Byl B, Libin M, Gérard M, et al. Bacterial extract OM85-BV induces interleukin-12-dependent IFN-gamma production by human CD4(+) T cells. J Interfer Cytok Res 1998; 18:817–821.
    1. Hu X, Zhang W, Wang L, et al. The detailed analysis of the changes of murine dendritic cells (DCs) induced by thymic peptide: pidotimod(PTD). Hum Vaccine Immunother 2012; 8: 1250e1258.
    1. Giagulli C, Noerder M, Avolio M, et al. Pidotimod promotes functional maturation of dendritic cells and displays adjuvant properties at the nasal mucosa level. Int Immunopharmacol 2009; 9:1366–1373.
    1. Esposito S, Garziano M, Rainone V, et al. Immunomodulatory activity of pidotimod administered with standard antibiotic therapy in children hospitalized for community-acquired pneumonia. J Translat Med 2015; 13:288.
    2. Key mechanistic study showing immodulatory activity of pidotimod in childhood respiratory tract infections.

    1. Trabattoni D, Clerici M, Centanni S, et al. Immunomodulatory effects of pidotimod in adults with community-acquired pneumonia undergoing standard antibiotic therapy. Pulm Pharmacol Ther 2017; 44:24–29.
    1. Carta S, Silvestri M, Rossi GA. Modulation of airway epithelial cell functions by Pidotimod: NF-kB cytoplasmatic expression and its nuclear translocation are associated with an increased TLR-2 expression. Ital J Pediatr 2013; 39:29.
    1. Aivazis V, Hatzimichail A, Papachristou A, et al. Clinical evaluation and changes of the respiratory epithelium function after administration of Pidotimod in Greek children with recurrent respiratory tract infections. Minerva Pediatr 2002; 54:315–319.
    1. He S, Hong Y. Clinical efficacy of loratadine combined with pidotimod in the treatment of children with recurrent respiratory tract infection and effect on immune function. Zhongguo Yaoshi 2015; 18:1904–1906.
    1. Zhang SL, Man D, Lei YG. Changes of immune function in children with Mycoplasma pneumoniae pneumonia and effects of pidotimod on the disease. J Hainan Med Univ; 2013-12. Available at: .
    1. Meng M, Li CX, Hong Y, et al. Effects of C-pseudonucleosides bearing thiazolidin-4-one as immunostimulants on differentiations of human lymphocytes. Chin J Microbiol Immunol 2012; 32:486–490.
    1. Zhou Y, Dai Y. Comparison of effects of pidotimod and spleen aminopeptide on clinical symptoms and Th1/Th2 cytokine in children with RRI. Chin J Biochem Pharm 2012; 33:64–66.
    1. Namazova-Baranova LS, Alekseeva AA, Kharit SM, et al. Efficacy and safety of pidotimod in the prevention of recurrent respiratory infections in children: a multicentre study. Int J Immunopathol Pharmacol 2014; 27:413–419.
    2. Key study showing the efficacy of pidotimod in childhood respiratory tract infections.

    1. Grigoryan SS, Ivanova AM. Effect of pidotimod on production of pro- and anti-inflammatory cytokines ex vivo. Curr Pediatr 2001; 10:129–132.
    1. Lokshina EE, Kravchenko OV, Zaytseva OV. Pidotimod in treatment of children with acute respiratory infection with concomitant recurrent obstructive syndrome. Curr Pediatr 2011; 10:34–41.
    1. Boccaccio C, Jacod S, Kaiser A, et al. Identification of a clinical-grade maturation factor for dendritic cells. J Immunother 2002; 25:88–96.
    1. Peng JC, Thomas R, Nielsen LK. Generation and maturation of dendritic cells for clinical application under serum-free conditions. J Immunother 2005; 28:599–609.
    1. Villa-Ambriz J, Rodríguez-Orozco AR, Béjar-Lozano C, Cortés-Rojo C. The Increased Expression of CD11c and CD103 Molecules in the Neutrophils of the Peripheral Blood Treated With a Formula of Bacterial Ribosomes and Proteoglycans of Klebsiella pneumoniae. Archivos De Bronconeumologia 2012; 48:316–319.
    1. Litovskaia AV, Penknovich AA, Lavreniuk NA, et al. Experience of ribomunyl application in patients with chronic bronchitis. Klin Med 2005; 83:53–57.
    1. Mora R, Ralli G, Passali FM, et al. Short ribosomal prophylaxis in the prevention of clinical recurrences of chronic otitis media in children. Int J Pediatr Otorhinolaryngol 2004; 68:83–89.
    1. Béné MC, Faure GC. From Peyer's patches to tonsils. Specific stimulation with ribosomal immunotherapy. Drugs 1997; 54:24–28.
    1. Hbabi-Haddioui L, Roques C. Inhibition of Streptococcus pneumoniae adhesion by specific salivary IgA after oral immunisation with a ribosomal immunostimulant. Drugs 1997; 54:29–32.
    1. Mora R, Dellepiane M, Crippa B, Salami A. Ribosomal therapy in the prophylaxis of recurrent pharyngotonsillitis in children. Int J Pediatr Otorhinolaryngol 2007; 71:257–261.
    1. Mora R, Dellepiane M, Crippa B, et al. Ribosomal therapy in the treatment of recurrent acute adenoiditis. Eur Arch Otorhinolaryngol 2010; 267:1313–1318.
    1. Lanzilli G, Falchetti R, Tricarico M, et al. In vitro effects of an immunostimulating bacterial lysate on human lymphocyte function. Int J Immunopathol Pharmacol 2005; 18:245–254.
    1. Lanzilli G, Falchetti R, Cottarelli A, et al. In vivo effect of an immunostimulating bacterial lysate on human B lymphocytes. Int J Immunopathol Pharmacol 2006; 19:551–559.
    1. Rossi GA, Peri C, Raynal ME, et al. Naturally occurring immune response against bacteria commonly involved in upper respiratory tract infections: analysis of the antigen-specific salivary IgA levels. Immunol Lett 2003; 86:85–91.
    1. Cazzola M, Capuano A, Rogliani P, Matera MG. Bacterial lysates as a potentially effective approach in preventing acute exacerbation of COPD. Curr Opin Pharmacol 2012; 12:300–308.
    1. Bessler WG, Vor dem Esche U, Masihi N. The bacterial extract OM-85 BV protects mice against influenza and salmonella infection. Int Immunopharmacol 2010; 10:1086–1090.
    1. Broug-Holub E, Kraal G. In vivo study on the immunomodulating effects of OM-85 BV on survival, inflammatory cell recruitment and bacterial clearance in Klebsiella pneumonia. Int J Immunopharmacol 1997; 19:559–564.
    1. Ferrario BE, Garuti S, Braido F, Canonica GW. Pidotimod: the state of art. Clin Mol Allergy 2015; 13:8.
    1. Kim CH, Kim DJ, Lee SJ, et al. Toll-like receptor 2 promotes bacterial clearance during the initial stage of pulmonary infection with Acinetobacter baumannii. Mol Med Rep 2014; 9:1410–1414.
    1. Bodhankar S, Woolard MD, Sun X, Simecka JW. NK cells interfere with the generation of resistance against mycoplasma respiratory infection following nasal-pulmonary immunization. J Immunol 2009; 183:2622–2631.
    1. Bozzetto S, Pirillo P, Carraro S, et al. Metabolomic profile of children with recurrent respiratory infections. Pharmacol Res 2017; 115:162–167.
    1. Portalès P, Clot J. Immunostimulants revisited: focus on the pharmacology of Ribomunyl. BioDrugs 2006; 20:81–84.
    1. Caliot E, Libon C, Kernéis S, Pringault E. Translocation of ribosomal immunostimulant through an in vitro-reconstituted digestive barrier containing M-like cells. Scand J Immunol 2000; 52:588–594.
    1. Kolopp-Sarda MN, Béné ME, Allaire JM, et al. Kinetics of specific salivary IgA responses in man after oral challenge by ribosomal immunostimulant. Int J Immunopharmacol 1997; 19:181–186.
    1. Schaad UB. Prevention of paediatric respiratory tract infections: emphasis on the role of OM-85. Eur Respir Rev 2005; 14:74–77.
    1. Yin J, Xu B, Zeng X, Shen K. Broncho-Vaxom in pediatric recurrent respiratory tract infections: a systematic review and meta-analysis. Int Immunopharmacol 2018; 54:198–209.
    2. Most recent meta-analysis of 54 RCTs of OM-85.

    1. Gutierrez-Tarango MD, Berber A. Safety and efficacy of two courses of OM-85 BV in the prevention of respiratory tract infections in children during 12 months. Chest 2001; 119:1742–1748.
    1. Schaad UB, Mütterlein R, Goffin H. BV-Child Study Group. Immunostimulation with OM-85 in children with recurrent infections of the upper respiratory tract: a double-blind, placebo-controlled multicenter study. Chest 2002; 122:2042–2049.
    1. Bitar MA, Saade R. The role of OM-85 BV (Broncho-Vaxom) in preventing recurrent acute tonsillitis in children. Int J Pediatr Otorhinolaryngol 2013; 77:670–673.
    1. Esposito S, Marchisio P, Prada E, et al. Impact of a mixed bacterial lysate (OM-85 BV) on the immunogenicity, safety and tolerability of inactivated influenza vaccine in children with recurrent respiratory tract infection. Vaccine 2014; 2:2546–2552.
    1. Gomez Barreto D, De la Torre C, Alvarez A, et al. Safety and efficacy of OM-85-BV plus amoxicillin/clavulanate in the treatment of subacute sinusitis and the prevention of recurrent infections in children. Allergol Immunopathol 1998; 26:17–22.
    1. Chen J, Zhou Y, Nie J, et al. Bacterial lysate for the prevention of chronic rhinosinusitis recurrence in children. J Laryngol Otol 2017; 131:523–528.
    1. Jara-Perez JV, Berber A. Primary prevention of acute respiratory tract infections in children using a bacterial immunostimulant: a double-masked, placebo-controlled clinical trial. Clin Ther 2000; 22:748–759.
    1. Caramia G, Clemente E, Solli R, et al. Efficacy and safety of pidotimod in the treatment of recurrent respiratory infections in children. Curr Pediatr 2008; 7:72–76.
    1. Licari A, De Amici M, Nigrisoli S, et al. Pidotimod may prevent recurrent respiratory infections in children. Minerva Pediatr 2014; 66:363–367.
    1. Kharit SM, Nacharova EP, Namazova-Baranova LS, Fridman IV. Prophylactic efficacy of pidotimod for prophylaxis of respiratory diseases in children. Russian J Child Infect 2010; 9:46–50.
    1. Migatcheva NB, Kaganova TI. Relapsing respiratory infections in children: differential approach to management. Curr Pediatr 2012; 11:99–105.
    1. Di Filippo S, Varacalli S, Zardo F. Pidotimod in treatment of recurrent pharyngotonsillitis. Curr Pediatr 2008; 7:20–22.
    1. Yu X, Wang L, Xu C. Clinical efficacy of pidotimod in adjuvant treatment of recurrent respiratory tract infections in children. Chin J Nosocomiol 2014; 24:4361–4362.
    1. Mameli C, Pasinato A, Picca M, et al. Pidotimod for the prevention of acute respiratory infections in healthy children entering into daycare: a double blind randomized placebo-controlled study. Pharmacol Res 2015; 97:79–83.
    1. Fiocchi A, Omboni S, Mora R, et al. Efficacy and safety of ribosome-component immune modulator for preventing recurrent respiratory infections in socialized children. Allergy Asthma Proc 2012; 33:197–204.
    1. Mora R, Barbieri M, Passali GC, et al. A preventive measure for otitis media in children with upper respiratory tract infections. Int J Pediatr Otor-hinolaryngol 2002; 63:111–118.
    1. Rutishauser M, Pitzke P, Grevers G, et al. Use of a polyvalent bacterial lysate in patients with recurrent respiratory tract infections: results of a prospective, placebo-controlled, randomized, double-blind study. Adv Ther 1998; 15:330–341.
    1. Ruah SB, Ruah C, van Aubel A, et al. Efficacy of a polyvalent bacterial lysate in children with recurrent respiratory tract infections. Adv Ther 2001; 18:151–162.
    1. Zaplatnikov AL, Leonidovich A, Girina AA, et al. Polyvalent mechanical bacterial lysate in children with recurrent infections of the respiratory system: using experience, efficacy and safety. Pediatriya Zhurnal im GN Speranskogo 2016; 95:96–101.
    1. Strickland DH, Judd S, Thomas JA, et al. Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control. Mucosal Immunol 2011; 4:43–52.
    2. A study demonstrating the gut-lung axis and the role of Treg cells in prevention of aeroallergen sensitization.

    1. Navarro S, Cossalter G, Chiavaroli C, et al. The oral administration of bacterial extracts prevents asthma via the recruitment of regulatory T cells to the airways. Mucosal Immunol 2011; 4:53–65.
    2. Key study covering mechanistic aspects of OM-85's immunoregulatory activity under inflammatory conditions and the action of the gut lung axis.

    1. Fu R, Li J, Zhong H, et al. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency. PLoS One 2014; 9:e92912.
    1. Han L, Zheng CP, Sun YQ, et al. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice. Am J Rhinol Allergy 2014; 28:110–116.
    1. Rodrigues A, Gualdi LP, de Souza RG, et al. Bacterial extract (OM-85) with human-equivalent doses does not inhibit the development of asthma in a murine model. Allergol Immunopathol 2016; 44:504–511.
    1. Zhong H, Wei J, Yao Y, et al. A bacterial extract of OM-85 Broncho-Vaxom suppresses ovalbumin-induced airway inflammation and remodeling in a mouse chronic allergic asthma model. Int J Clin Exp Pathol 2017; 10:1149–1157.
    2. Study illustrating a number of anti-inflammatory mechanisms with potential to affect wheezing/asthma.

    1. Chen ZG, Ji JZ, Li M, et al. Effect and analysis of clinical efficacy of immunomodulator on serum levels of IL-4 and IFN-gamma in asthmatic children. J Sun Yat-sen Univ Med Sci 2009; 30:100–103.
    1. Lu Y, Li Y, Xu L, et al. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology 2015; 95:139–144.
    2. Recent study showing both mechanistic and clinical efficacy of OM-85 in children with respiratory tract infections and asthma.

    1. Han RF, Li HY, Wang JW, Cong XJ. Study on clinical effect and immunologic mechanism of infants capillary bronchitis secondary bronchial asthma treated with bacterial lysates Broncho-Vaxom. Eur Rev Med Pharmacol Sci 2016; 20:2151–2155.
    1. Fogli M, Caccuri F, Iaria ML, et al. The immunomodulatory molecule pidotimod induces the expression of the NOD-like receptor NLRP12 and attenuates TLR-induced inflammation. J Biol Regul Homeost Agents 2014; 28:753–766.
    1. Gourgiotis D, Papadopoulos NG, Bossios A, et al. Immune modulator pidotimod decreases the in vitro expression of CD30 in peripheral blood mononuclear cells of atopic asthmatic and normal children. J Asthma 2004; 41:285–287.
    1. Bystroň J, a Heřmanová Z, Szotkovská J, et al. Comparison of the effect of ribosomal immunotherapy on plasma levels of total IgE and cytokines IL-4, IL-5, IL-12 and IFNγ in adult atopic and non-atopic patients during the Pollen season. Clin Drug Invest 2004; 24:755–760.
    1. Bystroň J, b Heřmanová Z, Szotkovská J, et al. Effect of ribosomal immunotherapy on the clinical condition and plasma levels of cytokines IL-4, IL-5, IL-12 and IFNγ and total IgE in patients with seasonal allergy during the Pollen season. Clin Drug Invest 2004; 24:761–764.
    1. Banche G, Allizond V, Mandras N, et al. Improvement of clinical response in allergic rhinitis patients treated with an oral immunostimulating bacterial lysate: in vivo immunological effects. Int J Immunopathol Pharmacol 2007; 20:129–138.
    1. Bartkowiak-Emeryk M. The influence of polyvalent mechanical bacterial lysate on immunological parameters in asthmatic children. European Academy of Allergy and Clinical Immunology Congress 17–21 June 2017 Helsinki (Abstract 0078).
    1. Evans-Marin HL, Cao AT, Yao S, et al. Unexpected regulatory role of CCR9 in regulatory T cell development. PLoS One 2015; 10:e0134100.
    1. Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427:355–360.
    1. Graler MH, Goetzl EJ. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 2005; 18:551–553.
    1. Wei SH, Rosen H, Matheu MP, et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 2005; 6:1228–1235.
    1. McGeachie MJ, Yates KP, Zhou X, et al. Patterns of growth and decline in lung function in persistent childhood asthma. N Engl J Med 2016; 374:1842–1852.
    1. Holt PG, Strickland DH. Low dose treatment of mice with bacterial extract (OM-85) for attenuation of experimental atopic asthma in mice. Allergol Immunopathol 2017; 45:310–311.
    1. Fu LQ, Li YL, Fu AK, et al. Pidotimod exacerbates allergic pulmonary infection in an OVA mouse model of asthma. Mol Med Rep 2017; 16:4151–4158.
    1. Razi CH, Harmancı K, Abaci A, et al. The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. J Allergy Clin Immunol 2010; 126:763–769.
    2. Key study showing efficacy of OM-85 in preventing viral wheezing during childhood.

    1. Chen ZG, Ji JZ, Li M, et al. Immunoregulants improves the prognosis of infants with wheezing. Nan Fang Yi Ke Da Xue Xue Bao 2007; 27:1612–1613.
    1. Vargas Correa JB, Espinosa Morales S, Bolanos Ancona JC, et al. Pidotimod in recurring respiratory infection in children with allergic rhinitis, asthma, or both conditions. Rev Alerg Mexico 2002; 49:27–32.
    1. : NCT03243565. Available from: . Accessed 31 July 2017.
    1. Australia New Zealand Clinical Trial Registry (ANZCTR):ACTRN12612000518864. Available from: . Accessed 31 June 2007.
    1. EU Clinical Trials Registry. EudraCT: 2016-002705-19. Available from: . Accessed 30 January 2018.
    1. EU Clinical Trials Registry. EudraCT: 2016-001213-24. Available from: . Accessed 30 June 2017.
    1. : NCT02148796. Available from: . Accessed 31 July 2017.
    2. Large ongoing National Institutes for Health-sponsored trial investigating the prophylactic potential of OM-85 against wheezing in at risk children.

Source: PubMed

3
S'abonner