Reproducibility of 18F-fluoromisonidazole intratumour distribution in non-small cell lung cancer

Milan Grkovski, Jazmin Schwartz, Andreas Rimner, Heiko Schöder, Sean D Carlin, Pat B Zanzonico, John L Humm, Sadek A Nehmeh, Milan Grkovski, Jazmin Schwartz, Andreas Rimner, Heiko Schöder, Sean D Carlin, Pat B Zanzonico, John L Humm, Sadek A Nehmeh

Abstract

Background: Hypoxic tumours exhibit increased resistance to radiation, chemical, and immune therapies. 18F-fluoromisonidazole (FMISO) positron emission tomography (PET) is a non-invasive, quantitative imaging technique used to evaluate the presence and spatial distribution of tumour hypoxia. To facilitate the use of FMISO PET for identification of individuals likely to benefit from hypoxia-targeted treatments, we investigated the reproducibility of FMISO PET spatiotemporal intratumour distribution in patients with non-small cell lung cancer (NSCLC).

Methods: Ten patients underwent 18F-fluorodeoxyglucose (FDG) PET/CT scans, followed by two FMISO PET/CT scans 1-2 days apart. Nineteen lesions in total were segmented from co-registered FDG PET image sets. Volumes of interest were also defined on normal contralateral lung and subscapularis muscle. The Pearson correlation coefficient r was calculated for mean standardized uptake values (SUV) within investigated volumes of interest and for voxels within tumour volumes (r TV). The reproducibility of FMISO voxelwise distribution, SUV- and tumour-to-blood ratio (TBR)-derived indices was assessed using correlation and Bland-Altman analyses.

Results: The SUVmax, SUVmean, TBRmax, and TBRmean were highly correlated (r ≥ 0.87, p < 0.001) and were reproducible to within 10-15 %. The mean r TV was 0.84 ± 0.10. 77 % of voxels identified as hypoxic on one FMISO scan were confirmed as such on the other FMISO scan. Mean voxelwise differences between TBR values as calculated from pooled data including all lesions were 0.9 ± 10.8 %.

Conclusions: High reproducibility of FMISO intratumour distribution in NSCLC patients was observed, facilitating its use in determining the topology of the hypoxic tumour sub-volumes for dose escalation, in patient stratification strategies for hypoxia-targeted therapies, and in monitoring response to therapeutic interventions.

Trial registration: Current Controlled Trials NCT02016872.

Keywords: 18F-fluoromisonidazole; Hypoxia; Non-small cell lung cancer; Quantification; Reproducibility.

Figures

Fig. 1
Fig. 1
Reproducibility of FMISO intratumor distribution in patients with NSCLC. Voxelwise scatter plots of tumour-to-blood ratio in FMISO1 (x-axis) vs. FMISO2 (y-axis) are presented for all 19 lesions. Black, blue, and red voxels represent normoxic, hypoxia-ambiguous, and hypoxic tumour sub-volumes, respectively, as based on the TBR ≥ 1.2 threshold (dashed lines). Equality lines (dotted) and rTV are also displayed for all scatter plots. rTV values were significant in all cases
Fig. 2
Fig. 2
FMISO PET images of two patients with non-small cell lung cancer. From left to right: coronal, axial, and sagittal slices showing the first (upper row) and second (lower row) FMISO PET scans of a patient #2 (lesion #2) and b patient #5 (lesion #7). PET images are windowed at 0–1.8 (a) and 0–1.4 (b) tumour-to-blood ratio, respectively
Fig. 3
Fig. 3
Bland-Altman analysis results for pooled data from all 19 lesions. Relative differences in voxelwise TBR values are shown against the average value combined from the two FMISO scans. Mean and both upper and lower limits of agreement (LoA) are displayed as red and blue lines, respectively

References

    1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.
    1. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–39. doi: 10.1007/s10555-007-9055-1.
    1. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9(12):674–87. doi: 10.1038/nrclinonc.2012.171.
    1. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996;41(1):31–9. doi: 10.1016/S0167-8140(96)91811-3.
    1. Russell J, Carlin S, Burke SA, Wen B, Yang KM, Ling CC. Immunohistochemical detection of changes in tumor hypoxia. Int J Radiat Oncol Biol Phys. 2009;73(4):1177–86. doi: 10.1016/j.ijrobp.2008.12.004.
    1. Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22(1):199–212. doi: 10.1016/0360-3016(92)91001-4.
    1. Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys. 1996;36(2):417–28. doi: 10.1016/S0360-3016(96)00325-2.
    1. Rajendran JG, Schwartz DL, O'Sullivan J, Peterson LM, Ng P, Scharnhorst J, et al. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res. 2006;12(18):5435–41. doi: 10.1158/1078-0432.CCR-05-1773.
    1. Koh WJ, Bergman KS, Rasey JS, Peterson LM, Evans ML, Graham MM, et al. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys. 1995;33(2):391–8. doi: 10.1016/0360-3016(95)00170-4.
    1. Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M, et al. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer. 2006;6:51. doi: 10.1186/1471-2407-6-51.
    1. Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46(2):253–60.
    1. Francis RJ, Segard T, Morandeau L, Lee YC, Millward MJ, Segal A, et al. Characterization of hypoxia in malignant pleural mesothelioma with FMISO PET-CT. Lung Cancer (Amsterdam, Netherlands) 2015;90(1):55–60. doi: 10.1016/j.lungcan.2015.07.015.
    1. Lee NY, Mechalakos JG, Nehmeh S, Lin Z, Squire OD, Cai S, et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys. 2008;70(1):2–13. doi: 10.1016/j.ijrobp.2007.06.039.
    1. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59(1):78–86. doi: 10.1016/j.ijrobp.2003.10.044.
    1. Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol. 2006;81(2):209–25. doi: 10.1016/j.radonc.2006.09.011.
    1. Vanderstraeten B, Duthoy W, De Gersem W, De Neve W, Thierens H. [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol. 2006;79(3):249–58. doi: 10.1016/j.radonc.2006.03.003.
    1. Ford EC, Herman J, Yorke E, Wahl RL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med. 2009;50(10):1655–65. doi: 10.2967/jnumed.108.055780.
    1. Nehmeh SA, Lee NY, Schroder H, Squire O, Zanzonico PB, Erdi YE, et al. Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;70(1):235–42. doi: 10.1016/j.ijrobp.2007.08.036.
    1. Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med. 2013;54(2):201–7. doi: 10.2967/jnumed.112.109330.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. doi: 10.1016/S0140-6736(86)90837-8.
    1. Nakamoto Y, Zasadny KR, Minn H, Wahl RL. Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol. 2002;4(2):171–8. doi: 10.1016/S1536-1632(01)00004-X.
    1. Weber WA, Gatsonis CA, Mozley PD, Hanna LG, Shields AF, Aberle DR, et al. Repeatability of 18F-FDG PET/CT in advanced non-small cell lung cancer: prospective assessment in 2 multicenter trials. J Nucl Med. 2015;56(8):1137–43. doi: 10.2967/jnumed.114.147728.
    1. Zegers CM, van Elmpt W, Szardenings K, Kolb H, Waxman A, Subramaniam RM, et al. Repeatability of hypoxia PET imaging using [(18)F]HX4 in lung and head and neck cancer patients: a prospective multicenter trial. Eur J Nucl Med Mol Imaging. 2015;42(12):1840–9. doi: 10.1007/s00259-015-3100-z.
    1. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S–20S. doi: 10.2967/jnumed.108.057182.
    1. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med. 2002;43(7):876–81.

Source: PubMed

3
S'abonner