Anthropometric measurements of non-arthritic knees in an Egyptian population: an MRI-based study

Mohammad Kamal Abdelnasser, Ahmed A Khalifa, Micheal Bassem, Mohammed Anter Abdelhameed, Mahmoud Faisal Adam, Hatem M Bakr, Yaser E Khalifa, Mohammad Kamal Abdelnasser, Ahmed A Khalifa, Micheal Bassem, Mohammed Anter Abdelhameed, Mahmoud Faisal Adam, Hatem M Bakr, Yaser E Khalifa

Abstract

Background: Knee anthropometric characteristics were evaluated for different ethnicities; however, data from North African populations are deficient. The primary aim was to investigate the Egyptian knees' anthropometric characteristics as a representative of North African populations. Secondary aims are as follows: (1) to study the anthropometric gender difference, (2) to compare results with other ethnic groups, and (3) to study the mismatch in comparison to geometric characteristics of modern TKA implant designs.

Methods: Two hundred normal knee MRI scans (100 females and 100 males, aging from 18 to 60) were obtained for analysis. Linear measurements (anteroposterior (AP), mediolateral (ML), and aspect ratio (AR)) of the planned cut surface of the distal femur (f) and the proximal tibia (t) were evaluated.

Results: A significant difference between both sexes was found, males had larger measurements in anteroposterior [fAP: 60.97 ± 3.1 vs 54.78 ± 3.3 (P < 0.001), tAP: 46.89 ± 3.0 vs 41.35 ± 2.9 (P < 0.001)] and mediolateral [fML: 74.89 ± 3.2 vs 67.29 ± 3.7 (P < 0.001), tML: 76.01 ± 3.0 vs 67.26 ± 3.2 (P < 0.001)], the mean femoral and tibial AP and ML measurements were different from other ethnic groups. None of the seven studied TKA systems matched the largest ML or the smallest AP dimensions of the distal femur in the current study population.

Conclusion: A significant difference was found between males' and females' knee anthropometric characteristics. Some of the commonly used TKA implants in our area could not provide a perfect fit and coverage.

Trial registration: ClinicalTrials.gov identifier: NCT03622034 , registered on July 28, 2018.

Keywords: Anthropometric; Arab; North African; Total knee arthroplasty.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Distal femoral measurements. a Identification of the trans-epicondylar axis (TEA). b Measuring the femoral mediolateral (fML) length. c Line 1 is drawn tangential to the lowest point of the lateral femoral condyle and parallel to the TEA in a corresponding axial cut. d Line 2 is drawn tangential to the highest point of the lateral distal femoral condyle (LDFC) and parallel to the TEA, measuring the femoral anteroposterior (fAP) length as the distance between Line 1 and Line 2
Fig. 2
Fig. 2
Proximal tibial measurements: The tibial mediolateral (tML) length as the longest mediolateral diameter, the tibial anteroposterior (tAP) as the length of a line drawn perpendicular to the tML through the midpoint of the axial cut. (TEA, trans-epicondylar axis)
Fig. 3
Fig. 3
Graph showing correlations between the femoral anthropometric measurements and modern knee implant designs (fML, femoral mediolateral; fAP, femoral anteroposterior)
Fig. 4
Fig. 4
Graph showing correlations between the tibial anthropometric measurements and modern knee implant designs (tAP, tibial anteroposterior; tML, tibial mediolateral)

References

    1. Ethgen O, Bruyere O, Richy F, Dardennes C, Reginster JY. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am. 2004;86(5):963–974. doi: 10.2106/00004623-200405000-00012.
    1. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57–63. doi: 10.1007/s11999-009-1119-9.
    1. Choong PF, Dowsey MM, Stoney JD. Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty. J Arthroplast. 2009;24(4):560–569. doi: 10.1016/j.arth.2008.02.018.
    1. Abdelnasser MK, Elsherif ME, Bakr H, Mahran M, Othman MH, Khalifa Y. All types of component malrotation affect the early patient-reported outcome measures after total knee arthroplasty. Knee Surg Relat Res. 2019;31(1):5. doi: 10.1186/s43019-019-0006-2.
    1. Han H, Oh S, Chang CB, Kang SB. Anthropometric difference of the knee on MRI according to gender and age groups. Surg Radiol Anat. 2016;38(2):203–211. doi: 10.1007/s00276-015-1536-2.
    1. Bellemans J, Carpentier K, Vandenneucker H, Vanlauwe J, Victor J. The John Insall award: both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clin Orthop Relat Res. 2010;468(1):29. doi: 10.1007/s11999-009-1016-2.
    1. Gaillard R, Bankhead C, Budhiparama N, Batailler C, Servien E, Lustig S. Influence of patella height on Total knee Arthroplasty: outcomes and survival. J Arthroplast. 2019;34(3):469–477. doi: 10.1016/j.arth.2018.10.037.
    1. Yang B, Song CH, Yu JK, Yang YQ, Gong X, Chen LX, et al. Intraoperative anthropometric measurements of tibial morphology: comparisons with the dimensions of current tibial implants. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):2924–2930. doi: 10.1007/s00167-014-3258-0.
    1. Nair VS, Radhamony NG, Padmalayam A, Govindan NO. Anthropometric comparison between Indian and Arabian knees with respect to Total knee replacement. J Knee Surg. 2020. , .
    1. Ehmke T, Aghazadeh M, Bono OJ, Robbins C, Bono JV. Anthropometric measures of the posterior condyles: gender differences and correlation to implant sizing. J Knee Surg. 2019;34(07):679–684. doi: 10.1055/s-0039-1700823.
    1. Xie X, Lin L, Zhu B, Lu Y, Lin Z, Li Q. Will gender-specific total knee arthroplasty be a better choice for women? A systematic review and meta-analysis. Eur J Orthop Surg Traumatol. 2014;24(8):1341–1349. doi: 10.1007/s00590-013-1396-6.
    1. Chung BJ, Kang JY, Kang YG, Kim SJ, Kim TK. Clinical implications of femoral anthropometrical features for Total knee Arthroplasty in Koreans. J Arthroplast. 2015;30(7):1220–1227. doi: 10.1016/j.arth.2015.02.014.
    1. Fehring TK, Odum SM, Hughes J, Springer BD, Beaver WB., Jr Differences between the sexes in the anatomy of the anterior condyle of the knee. JBJS. 2009;91(10):2335–2341. doi: 10.2106/JBJS.H.00834.
    1. Mensch JS, Amstutz HC. Knee morphology as a guide to knee replacement. Clin Orthop Relat Res. 1975;112(1):231–241. doi: 10.1097/00003086-197510000-00029.
    1. Mahfouz M, Abdel Fatah EE, Bowers LS, Scuderi G. Three-dimensional morphology of the knee reveals ethnic differences. Clin Orthop Relat Res. 2012;470(1):172–185. doi: 10.1007/s11999-011-2089-2.
    1. Kim TK, Phillips M, Bhandari M, Watson J, Malhotra R. What differences in morphologic features of the knee exist among patients of various races? A systematic review. Clin Orthop Relat Res. 2017;475(1):170–182. doi: 10.1007/s11999-016-5097-4.
    1. Li P, Tsai TY, Li JS, Zhang Y, Kwon YM, Rubash HE, et al. Morphological measurement of the knee: race and sex effects. Acta Orthop Belg. 2014;80(2):260–268.
    1. Mohan H, Chhabria P, Bagaria V, Tadepalli K, Naik L, Kulkarni R. Anthropometry of nonarthritic Asian knees: is it time for a race-specific knee implant? Clin Orthop Surg. 2020;12(2):158–165. doi: 10.4055/cios19069.
    1. Chaichankul C, Tanavalee A, Itiravivong P. Anthropometric measurements of knee joints in Thai population: correlation to the sizing of current knee prostheses. Knee. 2011;18(1):5–10. doi: 10.1016/j.knee.2009.12.005.
    1. Lim HC, Bae JH, Yoon JY, Kim SJ, Kim JG, Lee JM. Gender differences of the morphology of the distal femur and proximal tibia in a Korean population. Knee. 2013;20(1):26–30. doi: 10.1016/j.knee.2012.05.010.
    1. Cheng FB, Ji XF, Lai Y, Feng JC, Zheng WX, Sun YF, et al. Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee. 2009;16(5):341–347. doi: 10.1016/j.knee.2008.12.019.
    1. McNamara CA, Hanano AA, Villa JM, Huaman GM, Patel PD, Suarez JC. Anthropometric measurements of knee joints in the Hispanic population. J Arthroplast. 2018;33(8):2640–2646. doi: 10.1016/j.arth.2018.03.052.
    1. Hafez MA, Sheikhedrees SM, Saweeres ES. Anthropometry of Arabian arthritic knees: comparison to other ethnic groups and implant dimensions. J Arthroplast. 2016;31(5):1109–1116. doi: 10.1016/j.arth.2015.11.017.
    1. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: part I. Caspian J Intern Med. 2011;2(2):205–212.
    1. Kwak DS, Surendran S, Pengatteeri YH, Park SE, Choi KN, Gopinathan P, et al. Morphometry of the proximal tibia to design the tibial component of total knee arthroplasty for the Korean population. Knee. 2007;14(4):295–300. doi: 10.1016/j.knee.2007.05.004.
    1. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y. Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplast. 2002;17(8):1028–1032. doi: 10.1054/arth.2002.35790.
    1. Loures FB, Carrara RJ, Goes RFA, Albuquerque R, Barretto JM, Kinder A, et al. Anthropometric study of the knee in patients with osteoarthritis: intraoperative measurement versus magnetic resonance imaging. Radiol Bras. 2017;50(3):170–175. doi: 10.1590/0100-3984.2016.0007.
    1. Hofmann AA, Evanich JD, Ferguson RP, Camargo MP. Ten- to 14-year clinical followup of the cementless natural knee system. Clin Orthop Relat Res. 2001;388:85–94. doi: 10.1097/00003086-200107000-00013.
    1. Song SJ, Detch RC, Maloney WJ, Goodman SB, Huddleston JI., 3rd Causes of instability after total knee arthroplasty. J Arthroplast. 2014;29(2):360–364. doi: 10.1016/j.arth.2013.06.023.
    1. Hitt K, Shurman JR, 2nd, Greene K, McCarthy J, Moskal J, Hoeman T, et al. Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Am. 2003;85-A(Suppl 4):115–122. doi: 10.2106/00004623-200300004-00015.
    1. Bracey DN, Brown ML, Beard HR, Mannava S, Nazir OF, Seyler TM, et al. Effects of patellofemoral overstuffing on knee flexion and patellar kinematics following total knee arthroplasty: a cadaveric study. Int Orthop. 2015;39(9):1715–1722. doi: 10.1007/s00264-015-2715-9.
    1. Kawahara S, Matsuda S, Fukagawa S, Mitsuyasu H, Nakahara H, Higaki H, et al. Upsizing the femoral component increases patellofemoral contact force in total knee replacement. J Bone Joint Surg Brit. 2012;94(1):56–61. doi: 10.1302/0301-620X.94B1.27514.
    1. Mahoney OM, Kinsey T. Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences. J Bone Joint Surg Am. 2010;92(5):1115–1121. doi: 10.2106/JBJS.H.00434.
    1. Simsek ME, Akkaya M, Gursoy S, Isik C, Zahar A, Tarabichi S, et al. Posterolateral overhang affects patient quality of life after total knee arthroplasty. Arch Orthop Trauma Surg. 2018;138(3):409–418. doi: 10.1007/s00402-017-2850-4.

Source: PubMed

3
S'abonner