Savolitinib ± Osimertinib in Japanese Patients with Advanced Solid Malignancies or EGFRm NSCLC: Ph1b TATTON Part C

Kiyotaka Yoh, Tomonori Hirashima, Hideo Saka, Takayasu Kurata, Yuichiro Ohe, Toyoaki Hida, Anders Mellemgaard, Remy B Verheijen, Xiaoling Ou, Ghada F Ahmed, Manabu Hayama, Ko Sugibayashi, Geoffrey R Oxnard, Kiyotaka Yoh, Tomonori Hirashima, Hideo Saka, Takayasu Kurata, Yuichiro Ohe, Toyoaki Hida, Anders Mellemgaard, Remy B Verheijen, Xiaoling Ou, Ghada F Ahmed, Manabu Hayama, Ko Sugibayashi, Geoffrey R Oxnard

Abstract

Background: Preliminary data suggest that combining savolitinib, a potent and highly selective MET-tyrosine kinase inhibitor (TKI), with osimertinib, a third-generation, irreversible, oral epidermal growth factor receptor-TKI (EGFR-TKI), may overcome MET-based resistance to EGFR-TKIs.

Objective: To investigate the safety and tolerability of savolitinib in Japanese patients with advanced solid malignancies.

Patients and methods: In Part C of the phase Ib, multi-arm, open-label, multicenter TATTON study, two cohorts of Japanese adult patients were evaluated across six study centers in Japan. Patients with advanced solid malignancies received oral savolitinib monotherapy 400 mg once daily (qd), escalating to 600 mg; patients with advanced EGFR mutation-positive (EGFRm) non-small-cell lung carcinoma (NSCLC) who progressed on prior EGFR-TKI received oral osimertinib 80 mg+savolitinib 300/400/600 mg qd combination therapy. Primary endpoints: safety/tolerability of savolitinib±osimertinib, and maximum tolerated dose(s) (MTD) definition.

Results: Seventeen patients received monotherapy; 12 received combination. Dose-limiting toxicities (DLTs): with monotherapy, 400 mg, none reported; 600 mg, n = 3/9 evaluable patients (33%) reported DLTs (grade 3 and 4 alanine aminotransferase and aspartate transaminase increased, and grade 4 drug-induced liver injury). With combination: 400 mg, 1/6 (17%) reported DLTs (grade 2 fatigue, nausea, and myalgia); 300 mg, none reported; 600 mg, 3/4 (75%) reported DLTs (grade 2 pyrexia, grade 3 skin reaction, and anaphylactic shock). Grade ≥3 adverse events were reported in 41% of patients receiving monotherapy and 33% receiving combination. TATTON is no longer recruiting patients.

Conclusions: The MTD of savolitinib was 400 mg qd in both cohorts. Data demonstrate an acceptable safety profile for savolitinib alone, or with osimertinib.

Trial registration: Clinicaltrials.gov; NCT02143466; 21 May 2014.

Conflict of interest statement

KY received honoraria and research funds from AstraZeneca. TH received honoraria from Ono, Eli Lilly, AstraZeneca, Taiho, Chugai, MSD and Boehringer Ingelheim; research funds from Ono, Eli Lilly, AstraZeneca, Taiho, Chugai, Merck Serono, MSD and Boehringer Ingelheim. HS received honoraria from AstraZeneca and research funds from MSD, AstraZeneca, BMS, Takeda, Ono and Parexel. TK received honoraria from AstraZeneca, Eli Lilly, MSD, Ono, Boehringer Ingelheim, Chugai and Bristol Myers; research funds from Bristol Myers, Takeda, MSD, AstraZeneca and Novartis. YO received honoraria from AstraZeneca and Chugai; research funds from AstraZeneca, Chugai, ONO, BMS, Kyorin, Dainippon- Sumitomo, Taiho, Kissei, Ignyta, Takeda, Janssen and LOXO. TH received honoraria and research funds from AstraZeneca and Novartis. AM reports employment for AstraZeneca. RBV reports former employment for AstraZeneca and current employment for Johnson & Johnson; holding shares of AstraZeneca, Aduro Biotech and Johnson & Johnson. GFA reports former employment for AstraZeneca and current employment for UCB Pharma Ltd. MH, XO, KS report employment for AstraZeneca. GO reports employment for Foundation Medicine and honoraria from AstraZeneca.

Figures

Fig. 1
Fig. 1
Patient disposition. “Other” included progression of disease clinically. AE adverse event, PD progressive disease, PK pharmacokinetics
Fig. 2
Fig. 2
Dose-limiting toxicities (DLTs) across doses in (a) monotherapy in patients with advanced solid malignancies and (b) combination therapy in patients with epidermal growth factor receptor mutation positive advanced non-small cell lung cancer. ALT alanine aminotransferase, AST aspartate aminotransferase. *Not recovered/not resolved
Fig. 3
Fig. 3
Waterfall plot of the best percentage change in target lesion size in (a) patients with advanced solid malignancies receiving savolitinib monotherapy and (b) patients with epidermal growth factor receptor mutation positive advanced non-small-cell lung cancer receiving savolitinib + osimertinib combination therapy (by dose of savolitinib)

References

    1. Hanna N, Johnson D, Temin S, Baker S, Jr, Brahmer J, Ellis PM, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline update. J Clin Oncol. 2017;35(30):3484–3515. doi: 10.1200/jco.2017.74.6065.
    1. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(suppl 4):iv192–iv237. doi: 10.1093/annonc/mdy275.
    1. Wu YL, Planchard D, Lu S, Sun H, Yamamoto N, Kim DW, et al. Pan-Asian adapted Clinical Practice Guidelines for the management of patients with metastatic non-small-cell lung cancer: a CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS. SSO and TOS. Ann Oncol. 2019;30(2):171–210. doi: 10.1093/annonc/mdy554.
    1. Wang ZF, Ren SX, Li W, Gao GH. Frequency of the acquired resistant mutation T790M in non-small cell lung cancer patients with active exon 19Del and exon 21 L858R: a systematic review and meta-analysis. BMC Cancer. 2018;18(1):148. doi: 10.1186/s12885-018-4075-5.
    1. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. doi: 10.1126/scitranslmed.3002003.
    1. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–2247. doi: 10.1158/1078-0432.CCR-12-2246.
    1. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–1043. doi: 10.1126/science.1141478.
    1. Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4(9):1046–1061. doi: 10.1158/-14-0337.
    1. Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N Engl J Med. 2017;376(7):629–640. doi: 10.1056/NEJMoa1612674.
    1. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–125. doi: 10.1056/NEJMoa1713137.
    1. Wu YL, Ahn MJ, Garassino MC, Han JY, Katakami N, Kim HR, et al. CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3) J Clin Oncol. 2018;36(26):2702–2709. doi: 10.1200/jco.2018.77.9363.
    1. Reungwetwattana T, Nakagawa K, Cho BC, Cobo M, Cho EK, Bertolini A, et al. CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-mutated advanced non–small-cell lung cancer. J Clin Oncol. 2018;36(33):3290–3297. doi: 10.1200/jco.2018.78.3118.
    1. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50. doi: 10.1056/NEJMoa1913662.
    1. Japanese Ministry of Health LaW: TAGRISSO™ (osimertinib) Prescribing Information. (2018). Accessed 14 August 2020.
    1. US Food & Drug Administration: TAGRISSO™ (osimertinib) Highlights of Prescribing Information. (2018). Accessed 14 August 2020.
    1. European Medicines Agency: TAGRISSO™ (osimertinib) Summary of Product Characteristics. (2018). Accessed 14 August 2020.
    1. Wu Y-L, Tsuboi M, He J, John T, Grohe C, Majem M, et al. Osimertinib in resected EGFR-mutated non–small-cell lung cancer. NEJM. 2020;383(18):1711–1723. doi: 10.1056/NEJMoa2027071.
    1. Gainor JF, Niederst MJ, Lennerz JK, Dagogo-Jack I, Stevens S, Shaw AT, et al. Dramatic response to combination erlotinib and crizotinib in a patient with advanced, EGFR-mutant lung cancer harboring de novo MET amplification. J Thorac Oncol. 2016;11(7):e83–e85. doi: 10.1016/j.jtho.2016.02.021.
    1. York ER, Varella-Garcia M, Bang TJ, Aisner DL, Camidge DR. Tolerable and effective combination of full-dose crizotinib and osimertinib targeting MET amplification sequentially emerging after T790M positivity in EGFR-mutant non-small cell lung cancer. J Thorac Oncol. 2017;12(7):e85–e88. doi: 10.1016/j.jtho.2017.02.020.
    1. Jia H, Dai G, Weng J, Zhang Z, Wang Q, Zhou F, et al. Discovery of (S)-1-(1-(Imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2, 3]triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J Med Chem. 2014;57(18):7577–7589. doi: 10.1021/jm500510f.
    1. Gavine PR, Ren Y, Han L, Lv J, Fan S, Zhang W, et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol Oncol. 2015;9(1):323–333. doi: 10.1016/j.molonc.2014.08.015.
    1. Gan HK, Millward M, Hua Y, Qi C, Sai Y, Su W, et al. First-in-human phase I study of the selective MET inhibitor, savolitinib, in patients with advanced solid tumors: safety, pharmacokinetics, and antitumor activity. Clin Cancer Res. 2019;25(16):4924–4932. doi: 10.1158/1078-0432.Ccr-18-1189.
    1. Hua Y, Shen L, Gan H, Lickliter J, Millward M, Xu J, et al. Abstract CT305: phase I studies of a selective cMet inhibitor AZD6094 (HMPL504/volitinib) in patients with advanced solid tumors. Cancer Res. 2015;75(suppl 15):CT305. doi: 10.1158/1538-7445.AM2015-CT305.
    1. Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol. 2020;31(4):507–516. doi: 10.1016/j.annonc.2020.01.013.
    1. Sequist LV, Han J-Y, Ahn M-J, Cho BC, Yu H, Kim S-W, et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020;21(3):373–386. doi: 10.1016/S1470-2045(19)30785-5.
    1. Ohe Y, Imamura F, Nogami N, Okamoto I, Kurata T, Kato T, et al. Osimertinib versus standard-of-care EGFR-TKI as first-line treatment for EGFRm advanced NSCLC: FLAURA Japanese subset. Jpn J Clin Oncol. 2019;49(1):29–36. doi: 10.1093/jjco/hyy179.
    1. Akamatsu H, Katakami N, Okamoto I, Kato T, Kim YH, Imamura F, et al. Osimertinib in Japanese patients with EGFR T790M mutation-positive advanced non-small-cell lung cancer: AURA3 trial. Cancer Sci. 2018;109(6):1930–1938. doi: 10.1111/cas.13623.
    1. Papadimitrakopoulou VA, Wu YL, Han JY, Ahn MJ, Ramalingam SS, John T, et al. LBA51 Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Ann Oncol. 2018;29(suppl 8):mdy424.064. 10.1093/annonc/mdy424.064.
    1. Oxnard GR, Hu Y, Mileham KF, Husain H, Costa DB, Tracy P, et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 2018;4(11):1527–1534. doi: 10.1001/jamaoncol.2018.2969.
    1. Piotrowska Z, Isozaki H, Lennerz JK, Gainor JF, Lennes IT, Zhu VW, et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov. 2018;8(12):1529–1539. doi: 10.1158/-18-1022.
    1. Ramalingam SS, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho BC, et al. Mechanisms of acquired resistance to first-line osimertinib: Preliminary data from the phase III FLAURA study. Ann Oncol. 2018;29(suppl 8):viii740.
    1. Planchard D, Brown KH, Kim DW, Kim SW, Ohe Y, Felip E, et al. Osimertinib Western and Asian clinical pharmacokinetics in patients and healthy volunteers: implications for formulation, dose, and dosing frequency in pivotal clinical studies. Cancer Chemotherap Pharmacol. 2016;77(4):767–776. doi: 10.1007/s00280-016-2992-z.
    1. Oxnard GR, Cantarini M, Frewer P, Hawkins G, Peters J, Howarth P, et al. SAVANNAH: A phase II trial of osimertinib plus savolitinib for patients (pts) with EGFR-mutant, MET-driven (MET+), locally advanced or metastatic non-small cell lung cancer (NSCLC), following disease progression on osimertinib. J Clin Oncol. 2019;37(suppl 15):TPS9119. 10.1200/JCO.2019.37.15_suppl.TPS9119.
    1. Ahn M, Cantarini M, Frewer P, Hawkins G, Peters J, Howarth P, et al. P1.01-134 SAVANNAH: phase II trial of osimertinib + savolitinib in EGFR-mutant, MET-driven advanced NSCLC, following prior osimertinib. J Thorac Oncol. 2019;14(10):S415–S6. doi: 10.1016/j.jtho.2019.08.849.
    1. Yu H, Goldberg SB, Le X, Piotowska Z, Smith P, Mensi I, et al. ORCHARD: a phase II platform study in patients with advanced EGFRm NSCLC who have progressed on first-line osimertinib therapy. Poster P201-22 presented at the IASLC World Conference of Lung Cancer (WCLC), Barcelona, Spain, 7–10 September 2019.

Source: PubMed

3
S'abonner