Gender-specific estimates of COPD prevalence: a systematic review and meta-analysis

Georgios Ntritsos, Jacob Franek, Lazaros Belbasis, Maria A Christou, Georgios Markozannes, Pablo Altman, Robert Fogel, Tobias Sayre, Evangelia E Ntzani, Evangelos Evangelou, Georgios Ntritsos, Jacob Franek, Lazaros Belbasis, Maria A Christou, Georgios Markozannes, Pablo Altman, Robert Fogel, Tobias Sayre, Evangelia E Ntzani, Evangelos Evangelou

Abstract

Rationale: COPD has been perceived as being a disease of older men. However, >7 million women are estimated to live with COPD in the USA alone. Despite a growing body of literature suggesting an increasing burden of COPD in women, the evidence is limited.

Objectives: To assess and synthesize the available evidence among population-based epidemiologic studies and calculate the global prevalence of COPD in men and women.

Materials and methods: A systematic review and meta-analysis reporting gender-specific prevalence of COPD was undertaken. Gender-specific prevalence estimates were abstracted from relevant studies. Associated patient characteristics as well as custom variables pertaining to the diagnostic method and other important epidemiologic covariates were also collected. A Bayesian random-effects meta-analysis was performed investigating gender-specific prevalence of COPD stratified by age, geography, calendar time, study setting, diagnostic method, and disease severity.

Measurements and main results: Among 194 eligible studies, summary prevalence was 9.23% (95% credible interval [CrI]: 8.16%-10.36%) in men and 6.16% (95% CrI: 5.41%-6.95%) in women. Gender prevalences varied widely by the World Health Organization Global Burden of Disease subregions, with the highest female prevalence found in North America (8.07% vs 7.30%) and in participants in urban settings (13.03% vs 8.34%). Meta-regression indicated that age ≥40 and bronchodilator testing contributed most significantly to heterogeneity of prevalence estimates across studies.

Conclusion: We conducted the largest ever systematic review and meta-analysis of global prevalence of COPD and the first large gender-specific review. These results will increase awareness of COPD as a critical woman's health issue.

Keywords: COPD; age; gender; meta-analysis; prevalence; systematic review.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Summary estimates of prevalence for men and women by severity.
Figure 2
Figure 2
Summary estimates of prevalence for men and women by calendar time.

References

    1. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–2223.
    1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128.
    1. Adeloye D, Chua S, Lee C, et al. Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J Glob Health. 2015;5:020415.
    1. Burney PG, Patel J, Newson R, Minelli C, Naghavi M. Global and regional trends in COPD mortality, 1990–2010. Eur Respir J. 2015;45:1239–1247.
    1. Han MK, Postma D, Mannino DM, et al. Gender and chronic obstructive pulmonary disease: why it matters. Am J Respir Crit Care Med. 2007;176:1179–1184.
    1. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–2196.
    1. Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27:397–412.
    1. Lamprecht B, McBurnie MA, Vollmer WM, et al. COPD in never smokers: results from the population-based burden of obstructive lung disease study. Chest. 2011;139:752–763.
    1. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet. 2007;370:765–773.
    1. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015;2:CD003793.
    1. Aryal S, Diaz-Guzman E, Mannino DM. Influence of sex on chronic obstructive pulmonary disease risk and treatment outcomes. Int J Chron Obstruct Pulmon Dis. 2014;9:1145–1154.
    1. Sorheim IC, Johannessen A, Gulsvik A, Bakke PS, Silverman EK, DeMeo DL. Gender differences in COPD: are women more susceptible to smoking effects than men? Thorax. 2010;65:480–485.
    1. Buist AS, Vollmer WM, Sullivan SD, et al. The Burden of Obstructive Lung Disease Initiative (BOLD): rationale and design. COPD. 2005;2:277–283.
    1. Barnes PJ. Chronic obstructive pulmonary disease: a growing but neglected global epidemic. PLoS Med. 2007;4:e112.
    1. Kart L, Akkoyunlu ME, Bayram M, et al. COPD: an underdiagnosed disease at hospital environment. Wien Klin Wochenschr. 2014;126:73–78.
    1. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67:974–978.
    1. Smith TC, Spiegelhalter DJ, Thomas A. Bayesian approaches to random-effects meta-analysis: a comparative study. Stat Med. 1995;14:2685–2699.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.
    1. Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 2007;335:914–916.
    1. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28:523–532.
    1. Ko FW, Hui DS, Lai CK. Worldwide burden of COPD in high- and low-income countries. Part III. Asia-Pacific studies. Int J Tuberc Lung Dis. 2008;12:713–717.
    1. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187:347–365.
    1. Di Marco F, Tantucci C, Pellegrino G, Centanni S. Chronic obstructive pulmonary disease diagnosis: the simpler the better? Not always. Eur J Intern Med. 2013;24:199–202.
    1. Mohamed Hoesein FA, Zanen P, Lammers JW. Lower limit of normal or FEV1/FVC < 0.70 in diagnosing COPD: an evidence-based review. Respir Med. 2011;105:907–915.
    1. Ng M, Freeman MK, Fleming TD, Robinson M, et al. Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA. 2014;311:183–192.
    1. Silverman EK, Weiss ST, Drazen JM, et al. Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162:2152–2158.
    1. Gan WQ, Man SF, Postma DS, Camp P, Sin DD. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res. 2006;7:52.

Source: PubMed

3
S'abonner