Differential Patterns and Determinants of Cardiac Autonomic Nerve Dysfunction during Endotoxemia and Oral Fat Load in Humans

Dan Ziegler, Alexander Strom, Klaus Strassburger, Bettina Nowotny, Lejla Zahiragic, Peter J Nowotny, Maren Carstensen-Kirberg, Christian Herder, Julia Szendroedi, Michael Roden, Dan Ziegler, Alexander Strom, Klaus Strassburger, Bettina Nowotny, Lejla Zahiragic, Peter J Nowotny, Maren Carstensen-Kirberg, Christian Herder, Julia Szendroedi, Michael Roden

Abstract

The autonomic nervous system (ANS) plays an important role in regulating the metabolic homeostasis and controlling immune function. ANS alterations can be detected by reduced heart rate variability (HRV) in conditions like diabetes and sepsis. We determined the effects of experimental conditions mimicking inflammation and hyperlipidemia on HRV and heart rate (HR) in relation to the immune, metabolic, and hormonal responses resulting from these interventions. Sixteen lean healthy subjects received intravenous (i.v.) low-dose endotoxin (lipopolysaccharide [LPS]), i.v. fat, oral fat, and i.v. glycerol (control) for 6 hours, during which immune, metabolic, hormonal, and five HRV parameters (pNN50, RMSSD, low-frequency (LF) and high-frequency (HF) power, and LF/HF ratio) were monitored and energy metabolism and insulin sensitivity (M-value) were assessed. LPS infusion induced an increase (AUC) in HR and LF/HF ratio and decline in pNN50 and RMSSD, while oral fat resulted in elevated HR and a transient (hours 1-2) decrease in pNN50, RMSSD, and HF power. During LPS infusion, ΔIL-1ra levels and ΔIL-1ra and ΔIL-1ß gene expression correlated positively with ΔLF/HF ratio and inversely with ΔRMSSD. During oral fat intake, ΔGLP-1 tended to correlate positively with ΔHR and inversely with ΔpNN50 and ΔRMSSD. Following LPS infusion, lipid oxidation correlated positively with HR and inversely with pNN50 and RMSSD, whereas HRV was not related to M-value. In conclusion, suppression of vagal tone and sympathetic predominance during endotoxemia are linked to anti-inflammatory processes and lipid oxidation but not to insulin resistance, while weaker HRV changes in relation to the GLP-1 response are noted during oral fat load.

Trial registration: ClinicalTrials.gov NCT01054989.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Changes in heart rate and…
Fig 1. Changes in heart rate and heart rate variability (HRV) indices over 6 hours with the corresponding AUCs during the four interventions studied.
Fig 2. The time course of serum…
Fig 2. The time course of serum concentrations (A-C) and gene expression (E-H) of pro- and anti-inflammatory cytokines and GLP-1 concentrations (D).
Fig 3. Correlations of the changes in…
Fig 3. Correlations of the changes in IL-1ra serum concentrations (A), IL-1ra expression (B), and IL-1ß expression (C) with RMSSD and low-frequency/high-frequency (LF/HF) ratio following LPS infusion and correlations of the changes in GLP-1 with pNN50 and RMSSD after oral fat intake (D).

References

    1. Tracey KJ. The inflammatory reflex. Nature 2002;420: 853–859.
    1. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol. 2012;8: 743–754. 10.1038/nrendo.2012.189
    1. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405: 458–462.
    1. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9: 125–134.
    1. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117: 289–296.
    1. Schulte A, Lichtenstern C, Henrich M, Weigand MA, Uhle F. Loss of vagal tone aggravates systemic inflammation and cardiac impairment in endotoxemic rats. J Surg Res. 2014;15: 480–488.
    1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996;93: 1043–1065.
    1. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007;115: 387–397.
    1. Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med. 2005;33: 1994–2002.
    1. Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, et al. Inappropriate sympathetic activation at onset of septic shock—a spectral analysis approach. Am J Respir Crit Care Med. 1999;160: 458–465.
    1. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000;52: 595–638.
    1. Ahmad S, Ramsay T, Huebsch L, Flanagan S, McDiarmid S, Batkin I, et al. Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS One. 2009. August 14;4(8):e6642 10.1371/journal.pone.0006642
    1. Tateishi Y, Oda S, Nakamura M, Watanabe K, Kuwaki T, Moriguchi T, et al. Depressed heart rate variability is associated with high IL-6 blood level and decline in the blood pressure in septic patients. Shock 2007;28: 549–553.
    1. Alvarez SM, Katsamanis Karavidas M, Coyle SM, Lu SE, Macor M, Oikawa LO, et al. Low-dose steroid alters in vivo endotoxin-induced systemic inflammation but does not influence autonomic dysfunction. J Endotoxin Res. 2007;13: 358–368. 10.1177/0968051907086465
    1. Jan BU, Coyle SM, Oikawa LO, Lu SE, Calvano SE, Lehrer PM, et al. Influence of acute epinephrine infusion on endotoxin-induced parameters of heart rate variability: a randomized controlled trial. Ann Surg. 2009;249: 750–756. 10.1097/SLA.0b013e3181a40193
    1. Jan BU, Coyle SM, Macor MA, Reddell M, Calvano SE, Lowry SF. Relationship of basal heart rate variability to in vivo cytokine responses after endotoxin exposure. Shock 2010;33: 363–368. 10.1097/SHK.0b013e3181b66bf4
    1. Kox M, Ramakers BP, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P. Interplay between the acute inflammatory response and heart rate variability in healthy human volunteers. Shock 2011;36: 115–120. 10.1097/SHK.0b013e31821c2330
    1. Kox M, van Eijk LT, Zwaag J, van den Wildenberg J, Sweep FC, van der Hoeven JG, et al. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc Natl Acad Sci USA 2014;111: 7379–7384. 10.1073/pnas.1322174111
    1. Sayk F, Vietheer A, Schaaf B, Wellhoener P, Weitz G, Lehnert H, et al. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295: R891–R898. 10.1152/ajpregu.90444.2008
    1. Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, Møller K. Human endotoxemia as a model of systemic inflammation. Curr Med Chem. 2008;15: 1697–1705.
    1. Pagani M, Lucini D, Porta A. Sympathovagal balance from heart rate variability: time for a second round? Exp Physiol. 2012;97: 1141–1142.
    1. Lindmark S, Lonn L, Wiklund U, Tufvesson M, Olsson T, Eriksson JW. Dysregulation of the autonomic nervous system can be a link between visceral adiposity and insulin resistance. Obes Res 2005;13: 717–728.
    1. Paolisso G, Manzella D, Rizzo MR, Ragno E, Barbieri M, Varricchio G, et al. Elevated plasma fatty acid concentrations stimulate the cardiac autonomic nervous system in healthy subjects. Am J Clin Nutr. 2000;72: 723–730.
    1. Flanagan DE, Vaile JC, Petley GW, Moore VM, Godsland IF, Cockington RA, et al. The autonomic control of heart rate and insulin resistance in young adults. J Clin Endocrinol Metab. 1999;84: 1263–1267.
    1. Stuckey MI, Tulppo MP, Kiviniemi AM, Petrella RJ. Heart rate variability and the metabolic syndrome: a systematic review of the literature. Diabetes Metab Res Rev. 2014;30: 784–793. 10.1002/dmrr.2555
    1. Paolisso G, Manzella D, Rizzo MR, Barbieri M, Varricchio G, Gambardella A, et al. Effects of insulin on the cardiac autonomic nervous system in insulin-resistant states. Clin Sci (Lond). 2000;98: 129–136.
    1. Pannacciulli N, Bunt JC, Koska J, Bogardus C, Krakoff J. Higher fasting plasma concentrations of glucagon-like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. Am J Clin Nutr. 2006;84: 556–560.
    1. Schirra J, Houck P, Wank U, Arnold R, Göke B, Katschinski M. Effects of glucagon-like peptide-1(7–36)amide on antro-pyloro-duodenal motility in the interdigestive state and with duodenal lipid perfusion in humans. Gut 2000;46: 622–631.
    1. Valensi P, Chiheb S, Fysekidis M. Insulin- and glucagon-like peptide-1-induced changes in heart rate and vagosympathetic activity: why they matter. Diabetologia 2013;56: 1196–1200. 10.1007/s00125-013-2909-x
    1. Nowotny B, Zahiragic L, Krog D, Nowotny PJ, Herder C, Carstensen M, et al. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes 2013;62: 2240–2248. 10.2337/db12-1179
    1. Herder C, Bongaerts BW, Rathmann W, Heier M, Kowall B, Koenig W, et al. Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 study. Diabetes Care 2013;36: 3663–3670. 10.2337/dc13-0382
    1. Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB. Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med. 2007;69: 709–716.
    1. Kumar A, Zanotti S, Bunnell G, Habet K, Añel R, Neumann A, et al. Interleukin-10 blunts the human inflammatory response to lipopolysaccharide without affecting the cardiovascular response. Crit Care Med 2005;33: 331–340.
    1. Molina-Holgado F, Toulmond S, Rothwell NJ. Involvement of interleukin-1 in glial responses to lipopolysaccharide: endogenous versus exogenous interleukin-1 actions. J Neuroimmunol. 2000;111: 1–9.
    1. Murakami M, Ohta T, Ito S. Lipopolysaccharides enhance the action of bradykinin in enteric neurons via secretion of interleukin-1beta from enteric glial cells. J Neurosci Res. 2009;87: 2095–2104. 10.1002/jnr.22036
    1. Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial FFA metabolism during rest and atrial pacing in humans. Am J Physiol Endocrinol Metab. 2009;296: E358–E366. 10.1152/ajpendo.90747.2008
    1. Drake-Holland AJ, Noble MIM. Cellular abnormalities in chronically denervated myocardium. Implications for the transplanted heart. Circulation 1989;80: 1476–1481.
    1. van der Vusse GJ, Dubelaar ML, Coumans WA, Seymour AM, Clarke SB, Bonen A, et al. Metabolic alterations in the chronically denervated dog heart. Cardiovasc Res. 1998;37: 160–170.
    1. Drake-Holland AJ, Cummins P, English TAH, Wallwork J, Birch PJ. Metabolic changes in the autotransplanted baboon heart. Transplantation 1984;38: 454–459
    1. Vimercati C, Qanud K, Ilsar I, Mitacchione G, Sarnari R, Mania D, et al. Acute vagal stimulation attenuates cardiac metabolic response to β-adrenergic stress. J Physiol. 2012;590: 6065–6074. 10.1113/jphysiol.2012.241943
    1. Michaeli B, Martinez A, Revelly JP, Cayeux MC, Chioléro RL, Tappy L, et al. Effects of endotoxin on lactate metabolism in humans. Crit Care. 2012;16, R139 10.1186/cc11444
    1. Berkelaar M, Eekhoff EM, Simonis-Bik AM, Boomsma DI, Diamant M, Ijzerman RG, et al. Effects of induced hyperinsulinaemia with and without hyperglycaemia on measures of cardiac vagal control. Diabetologia 2013;56: 1436–1443. 10.1007/s00125-013-2848-6
    1. Griffioen KJ, Wan R, Okun E, Wang X, Lovett-Barr MR, Li Y, et al. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovasc Res. 2011;89: 72–78. 10.1093/cvr/cvq271
    1. van der Poll T, Coyle SM, Barbosa K, Braxton CC, Lowry SF. Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest 1996;97: 713–719.
    1. Czura CJ, Tracey KJ. Autonomic neural regulation of immunity. J Intern Med 2005;257: 156–166.

Source: PubMed

3
S'abonner