Transperineal versus transrectal prostate biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis

Jianjian Xiang, Huaqing Yan, Jiangfeng Li, Xiao Wang, Hong Chen, Xiangyi Zheng, Jianjian Xiang, Huaqing Yan, Jiangfeng Li, Xiao Wang, Hong Chen, Xiangyi Zheng

Abstract

Background: Because conventional prostate biopsy has some limitations, optimal variations of prostate biopsy strategies have emerged to improve the diagnosis rate of prostate cancer. We conducted the systematic review to compare the diagnosis rate and complications of transperineal versus transrectal prostate biopsy. We searched for online publications published through June 27, 2018, in PubMed, Scopus, Web of Science, and Chinese National Knowledge Infrastructure databases. The relative risk and 95% confidence interval were utilized to appraise the diagnosis and complication rate. The condensed relative risk of 11 included studies indicated that transperineal prostate biopsy has the same diagnosis accuracy of transrectal prostate biopsy; however, a significantly lower risk of fever and rectal bleeding was reported for transperineal prostate biopsy. No clue of publication bias could be identified.

Short conclusion: To conclude, this review indicated that transperineal and transrectal prostate biopsy have the same diagnosis accuracy, but the transperineal approach has a lower risk of fever and rectal bleeding. More studies are warranted to confirm these findings and discover a more effective diagnosis method for prostate cancer.

Keywords: Complication; Diagnosis accuracy; Prostate biopsy; Transperineal; Transrectal.

Conflict of interest statement

Ethics approval and consent to participate

All analyses were based on previous published studies thus no ethical approval and patient consent are required.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of study assessment and selection
Fig. 2
Fig. 2
Relative risks for RCTs assessing the diagnosis rate of the TP approach vs the TR approach. Notes: diamonds represent study-specific relative risks (RRs) or summary relative risks with 95% confidence intervals (CIs). Horizontal lines represent 95% CIs. Test for heterogeneity among studies: P = 0.678, I2 = 0.0%
Fig. 3
Fig. 3
Relative risks for observational studies assessing the diagnosis rate of the TP approach vs the TR approach. Notes: diamonds represent study-specific relative risks (RRs) or summary relative risks with 95% confidence intervals (CIs). Horizontal lines represent 95% CIs. Test for heterogeneity among studies: P = 0.151, I2 = 36.3%
Fig. 4
Fig. 4
Egger’s publication bias plot for RCTs. Notes: Egger’s regression asymmetry test (P = 0.74). Standardized effect was defined as the odds ratio divided by its standard error. Precision was defined as the inverse of the standard error
Fig. 5
Fig. 5
Egger’s publication bias plot for observational studies. Notes: Egger’s regression asymmetry test (P = 0.49). Standardized effect was defined as the odds ratio divided by its standard error. Precision was defined as the inverse of the standard error

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. doi: 10.3322/caac.21442.
    1. Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. Jama. 2014;311:1143–1149. doi: 10.1001/jama.2014.2085.
    1. Lee A, Chia SJ. Contemporary outcomes in the detection of prostate cancer using transrectal ultrasound-guided 12-core biopsy in Singaporean men with elevated prostate specific antigen and/or abnormal digital rectal examination. Asian J Urol. 2015;2:187–193. doi: 10.1016/j.ajur.2015.08.003.
    1. Hodge KK, McNeal JE, Terris MK, Stamey TA. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol. 1989;142:71–74. doi: 10.1016/S0022-5347(17)38664-0.
    1. Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71:618–629. doi: 10.1016/j.eururo.2016.08.003.
    1. Wang Y, Gao X, Yang Q, et al. Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy. Asian J Urol. 2015;2:214–219. doi: 10.1016/j.ajur.2015.09.002.
    1. Kim JW, Lee HY, Hong SJ, Chung BH. Can a 12 core prostate biopsy increase the detection rate of prostate cancer versus 6 core?: a prospective randomized study in Korea. Yonsei Med J. 2004;45:671–675. doi: 10.3349/ymj.2004.45.4.671.
    1. Xue J, Qin Z, Cai H, et al. Comparison between transrectal and transperineal prostate biopsy for detection of prostate cancer: a meta-analysis and trial sequential analysis. Oncotarget. 2017;8:23322–23336.
    1. Bor R, Farkas K, Balint A, et al. Prospective comparison of magnetic resonance imaging, transrectal and transperineal sonography, and surgical findings in complicated perianal Crohn disease. J Ultrasound Med. 2016;35:2367–2372. doi: 10.7863/ultra.15.09043.
    1. Tewes S, Peters I, Tiemeyer A, et al. Evaluation of MRI/ultrasound fusion-guided prostate biopsy using transrectal and transperineal approaches. Biomed Res Int. 2017;2017:2176471. doi: 10.1155/2017/2176471.
    1. Chen K, Tay KJ, Law YM, et al. Outcomes of combination MRI-targeted and transperineal template biopsy in restaging low-risk prostate cancer for active surveillance. Asian J Urol. 2018;5:184–193. doi: 10.1016/j.ajur.2017.07.001.
    1. Sazuka T, Imamoto T, Namekawa T, et al. Analysis of preoperative detection for apex prostate cancer by transrectal biopsy. Prostate Cancer. 2013;2013:705865. doi: 10.1155/2013/705865.
    1. Yuan L-r, Zhang C-g, Lu L-x, et al. Comparison of ultrasound-guided transrectal and transperineal prostate biopsies in clinical application. Zhonghua Nan Ke Xue. 2014;20:1004–1007.
    1. Miller J, Perumalla C, Heap G. Complications of transrectal versus transperineal prostate biopsy. ANZ J Surg. 2005;75:48–50. doi: 10.1111/j.1445-2197.2005.03284.x.
    1. Grummet JP, Weerakoon M, Huang S, et al. Sepsis and ‘superbugs’: should we favour the transperineal over the transrectal approach for prostate biopsy? BJU Int. 2014;114:384–388.
    1. Emiliozzi P, Corsetti A, Tassi B, Federico G, Martini M, Pansadoro V. Best approach for prostate cancer detection: a prospective study on transperineal versus transrectal six-core prostate biopsy. Urology. 2003;61:961–966. doi: 10.1016/S0090-4295(02)02551-7.
    1. Di Franco CA, Jallous H, Porru D, et al. A retrospective comparison between transrectal and transperineal prostate biopsy in the detection of prostate cancer. Archivio Italiano di Urologia e Andrologia. 2017;89:55–59. doi: 10.4081/aiua.2017.1.55.
    1. Pepe P, Garufi A, Priolo G, Pennisi M. Transperineal versus transrectal MRI/TRUS fusion targeted biopsy: detection rate of clinically significant prostate cancer. Clin Genitourin Cancer. 2017;15:e33–ee6. doi: 10.1016/j.clgc.2016.07.007.
    1. Abdollah F, Novara G, Briganti A, et al. Trans-rectal versus trans-perineal saturation rebiopsy of the prostate: is there a difference in cancer detection rate? Urology. 2011;77:921–925. doi: 10.1016/j.urology.2010.08.048.
    1. Guo L-H, Wu R, Xu H-X, et al. Comparison between ultrasound guided transperineal and transrectal prostate biopsy: A prospective, randomized, and controlled trial [J]. Scientific reports. 2015;5(16089). .
    1. Hara R, Jo Y, Fuji T, et al. Optimal approach for prostate cancer detection as initial biopsy: prospective randomized study comparing transperineal versus transrectal systematic 12-core biopsy. Urology. 2008;71:191–195. doi: 10.1016/j.urology.2007.09.029.
    1. Takenaka A, Hara R, Ishimura T, et al. A prospective randomized comparison of diagnostic efficacy between transperineal and transrectal 12-core prostate biopsy. Prostate Cancer Prostatic Dis. 2008;11:134–138. doi: 10.1038/sj.pcan.4500985.
    1. Cerruto MA, Vianello F, D’Elia C, Artibani W, Novella G. Transrectal versus transperineal 14-core prostate biopsy in detection of prostate cancer: a comparative evaluation at the same institution. Arch Ital Urol Androl. 2014;86:284–287. doi: 10.4081/aiua.2014.4.284.
    1. Yan H, Xie H, Ying Y, et al. Pioglitazone use in patients with diabetes and risk of bladder cancer: a systematic review and meta-analysis. Cancer Manag Res. 2018;10:1627–1638. doi: 10.2147/CMAR.S164840.
    1. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. doi: 10.1186/2046-4053-4-1.
    1. Yan H, Ying Y, Xie H, et al. Secondhand smoking increases bladder cancer risk in nonsmoking population: a meta-analysis. Cancer Manag Res. 2018;10:3781–3791. doi: 10.2147/CMAR.S175062.
    1. Udeh EI, Amu OC, Nnabugwu II, OFN O. Transperineal versus transrectal prostate biopsy: our findings in a tertiary health institution. Niger J Clin Pract. 2015;18:110–114.
    1. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–114. doi: 10.1016/j.cct.2006.04.004.
    1. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–1101. doi: 10.2307/2533446.
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Tian X, Zhu C, Li T, Li X. Comparison of the clinical value of transperineal and transrectal prostate biopsy guided by transrectal ultrasonography in diagnosis of prostate cancer. China J Modern Med. 2014;24:80–82.
    1. Watanabe M, Hayashi T, Tsushima T, Irie S, Kaneshige T, Kumon H. Extensive biopsy using a combined transperineal and transrectal approach to improve prostate cancer detection. Int J Urol. 2005;12:959–963. doi: 10.1111/j.1442-2042.2005.01186.x.
    1. Baco E, Rud E, Eri LM, et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur Urol. 2016;69:149–156. doi: 10.1016/j.eururo.2015.03.041.
    1. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med. 2018;378:1767–1777. doi: 10.1056/NEJMoa1801993.
    1. Brown LC, Ahmed HU, Faria R, et al. Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol Assess. 2018;22:1–176.
    1. Borkowetz A, Hadaschik B, Platzek I, et al. Prospective comparison of transperineal magnetic resonance imaging/ultrasonography fusion biopsy and transrectal systematic biopsy in biopsy-naive patients. BJU Int. 2018;121:53–60. doi: 10.1111/bju.14017.
    1. Wu J, Ji A, Xie B, et al. Is magnetic resonance/ultrasound fusion prostate biopsy better than systematic prostate biopsy? An updated meta- and trial sequential analysis. Oncotarget. 2015;6:43571–43580.

Source: PubMed

3
S'abonner