High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification

Daniel Scheiber, Verena Veulemans, Patrick Horn, Martijn L Chatrou, Sebastian A Potthoff, Malte Kelm, Leon J Schurgers, Ralf Westenfeld, Daniel Scheiber, Verena Veulemans, Patrick Horn, Martijn L Chatrou, Sebastian A Potthoff, Malte Kelm, Leon J Schurgers, Ralf Westenfeld

Abstract

Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD) and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP) is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7) supplementation (100 µg/g diet) on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05) and myocardial (2.4 fold; p < 0.05) calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01). MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA) expression (10-fold; p < 0.05). CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures.

Keywords: cardiovascular calcification; chronic kidney disease; matrix Gla-protein; menaquinone-7; vitamin K2.

Figures

Figure 1
Figure 1
Body weight in grams (g). Body weight of animals was measured repetitively during 12 weeks of study protocol. Experimental animals were not fully grown at start of the experiment; however, all animals gained weight significantly. During the experiment, control animals (Co; Co-K2) gained significantly more weight compared to CKD and CKD-K2 animals. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group; g = grams. Significant differences: ***p < 0.001.
Figure 2
Figure 2
Aortic calcium content. Measurement of aortic calcium content was performed by atomic absorption spectrometry and expressed as μg Ca/mg dry weight tissue. CKD animals display a significant increase in aortic calcium content compared to Co-K2 animals. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group; mg = milligrams; µg = micrograms. Significant differences: *p < 0.05.
Figure 3
Figure 3
Alkaline phosphatase (ALP) in aortic tissues. ALP was measured to detect local vascular osteochondrogenic activity. Positive staining for ALP is expressed as product score: ALP-positive staining areal × intensity. ALP-product-score is significantly increased in CKD animals as compared to Co animals. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group. Significant differences: **p < 0.01.
Figure 4
Figure 4
Myocardial calcium content. Measurement of myocardial calcium content using atomic absorption spectrometry in μg Ca/mg dry weight tissue. CKD animals display a significantly increased myocardial calcium content compared to Co animals. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group; mg = milligrams; µg = micrograms. Significant differences: *p < 0.05.
Figure 5
Figure 5
Renal calcification. Von Kossa positive staining area expressed as percentage of tissue area. In 5/6 nephrectomized animals significantly more von Kossa positivity was measured as compared to the control groups. No differences were seen between CKD and CKD-K2 treated groups. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group. Significant differences: **p < 0.01, ***p < 0.001.
Figure 6
Figure 6
Representative sections of von Kossa stained tissue samples. Microscopically visible von Kossa positive staining was only detected in kidney tissue samples of CKD and CDK-K2 animals. Magnification 40×; Counterstain: nuclear fast red; Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group.
Figure 7
Figure 7
Elastic fiber breaking points. Elastica van Gieson (EvG) staining of aortic tissue samples with focus on elastic fiber breaking points. CKD animals display significantly more elastic fiber breaking points compared to Co animals. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group. Significant differences: ***p < 0.001.
Figure 8
Figure 8
Proliferative response. Ratio of positive staining area for Ki67 per DAPI positive staining area in % per mm2. DAPI values do not differ significantly between groups. CKD animals display significantly more Ki67 positive staining area per DAPI positive staining area compared to Co animals. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group; mm = millimeters. Significant differences: ***p < 0.001.
Figure 9
Figure 9
Systolic and diastolic blood pressure. Systolic and diastolic blood pressure after 12 weeks of treatment. CKD animals developed significantly increased systolic and diastolic blood pressure values compared to controls. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group; mmHg = millimeters of mercury. Significant differences: *p < 0.05, **p < 0.01.
Figure 10
Figure 10
Echocardiography of diastolic interventricular septum diameter (LVISD) in cm. Echocardiography was performed in all animals after 12 weeks of study protocol. CKD animals developed significantly increased LVISD compared to controls. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group; cm = centimeters. Significant differences: *p < 0.05, **p < 0.01.
Figure 11
Figure 11
Aortic gene expression. The effect of CKD and MK-7 supplementation on aortic gene expression of calcification modifiers as x-fold induction compared to control group. Red columns depict pro-calcific changes, while alterations associated with potential calcification inhibition are assigned with blue columns. (a) In CKD animals SM22α expression is significantly decreased, whereas MGP expression is non-significantly decreased as compared to Co animals. (b) In Co-K2 animals MGP mRNA concentration is significantly increased, whereas POST mRNA concentration is significantly decreased compared to Co animals. (c) In CKD-K2 animals MGP mRNA concentration is significantly and SM22α mRNA concentration is tendentially increased compared to Co animals. Co = control group; Co-K2 = MK-7 supplemented control group; CKD = 5/6 nephrectomized group; CKD-K2 = MK-7 supplemented 5/6 nephrectomized group; MGP = matrix Gla-protein; POST = periostin; BMP-2 = bone morphogenetic protein 2. Significant differences: *p < 0.05, **p < 0.01.

References

    1. Allison M.A., Criqui M.H., Wright C.M. Patterns and risk factors for systemic calcified atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004;24:331–336. doi: 10.1161/01.ATV.0000110786.02097.0c.
    1. Giachelli C.M. The emerging role of phosphate in vascular calcification. Kidney Int. 2009;75:890–897. doi: 10.1038/ki.2008.644.
    1. Schurgin S., Rich S., Mazzone T. Increased prevalence of significant coronary artery calcification in patients with diabetes. Diabetes Care. 2001;24:335–338. doi: 10.2337/diacare.24.2.335.
    1. Vliegenthart R., Oudkerk M., Hofman A., Oei H.H., van Dijck W., van Rooij F.J., Witteman J.C. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112:572–577. doi: 10.1161/CIRCULATIONAHA.104.488916.
    1. Ketteler M., Schlieper G., Floege J. Calcification and cardiovascular health—New insights into an old phenomenon. Hypertension. 2006;47:1027–1034. doi: 10.1161/01.HYP.0000219635.51844.da.
    1. Wu M., Rementer C., Giachelli C.M. Vascular calcification: An update on mechanisms and challenges in treatment. Calcif. Tissue Int. 2013;93:365–373. doi: 10.1007/s00223-013-9712-z.
    1. Moe S.M., O’Neill K.D., Duan D., Ahmed S., Chen N.X., Leapman S.B., Fineberg N., Kopecky K. Medial artery calcification in esrd patients is associated with deposition of bone matrix proteins. Kidney Int. 2002;61:638–647. doi: 10.1046/j.1523-1755.2002.00170.x.
    1. Demer L.L., Tintut Y. Vascular calcification: Pathobiology of a multifaceted disease. Circulation. 2008;117:2938–2948. doi: 10.1161/CIRCULATIONAHA.107.743161.
    1. Chatrou M.L., Winckers K., Hackeng T.M., Reutelingsperger C.P., Schurgers L.J. Vascular calcification: The price to pay for anticoagulation therapy with vitamin K-antagonists. Blood Rev. 2012;26:155–166. doi: 10.1016/j.blre.2012.03.002.
    1. Reaven P.D., Sacks J. Coronary artery and abdominal aortic calcification are associated with cardiovascular disease in type 2 diabetes. Diabetologia. 2005;48:379–385. doi: 10.1007/s00125-004-1640-z.
    1. Okuno S., Ishimura E., Kitatani K., Fujino Y., Kohno K., Maeno Y., Maekawa K., Yamakawa T., Imanishi Y., Inaba M., et al. Presence of abdominal aortic calcification is significantly associated with all-cause and cardiovascular mortality in maintenance hemodialysis. Am. J. Kidney Dis. 2007;49:417–425. doi: 10.1053/j.ajkd.2006.12.017.
    1. Schurgers L.J., Cranenburg E.C.M., Vermeer C. Matrix gla-protein: The calcification inhibitor in need of vitamin k. Thromb. Haemost. 2008 doi: 10.1160/TH08-02-0087.
    1. Price P.A., Urist M.R., Otawara Y. Matrix gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem. Biophys. Res. Commun. 1983;117:765–771. doi: 10.1016/0006-291X(83)91663-7.
    1. Luo G., Ducy P., McKee M.D., Pinero G.J., Loyer E., Behringer R.R., Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix gla protein. Nature. 1997;386:78–81. doi: 10.1038/386078a0.
    1. Munroe P.B., Olgunturk R.O., Fryns J.P., van Maldergem L., Ziereisen F., Yuksel B., Gardiner R.M., Chung E. Mutations in the gene encoding the human matrix gla protein cause keutel syndrome. Nat. Genet. 1999;21:142–144. doi: 10.1038/5102.
    1. Schurgers L.J., Uitto J., Reutelingsperger C.P. Vitamin k-dependent carboxylation of matrix gla-protein: A crucial switch to control ectopic mineralization. Trends Mol. Med. 2013;19:217–226. doi: 10.1016/j.molmed.2012.12.008.
    1. Murshed M., Schinke T., McKee M.D., Karsenty G. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J. Cell Biol. 2004;165:625–630. doi: 10.1083/jcb.200402046.
    1. Schurgers L.J., Teunissen K.J., Knapen M.H., Kwaijtaal M., van Diest R., Appels A., Reutelingsperger C.P., Cleutjens J.P., Vermeer C. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid (gla) protein: Undercarboxylated matrix gla protein as marker for vascular calcification. Arterioscler. Thromb. Vasc. Biol. 2005;25:1629–1633. doi: 10.1161/01.ATV.0000173313.46222.43.
    1. Berkner K.L., Runge K.W. The physiology of vitamin k nutriture and vitamin k-dependent protein function in atherosclerosis. J. Thromb. Haemost. 2004;2:2118–2132. doi: 10.1111/j.1538-7836.2004.00968.x.
    1. Rennenberg R.J.M.W., van Varik B.J., Schurgers L.J., Hamulyak K., ten Cate H., Leiner T., Vermeer C., de Leeuw P.W., Kroon A.A. Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans. Blood. 2010;115:5121–5123. doi: 10.1182/blood-2010-01-264598.
    1. Pilkey R.M., Morton A.R., Boffa M.B., Noordhof C., Day A.G., Su Y.H., Miller L.M., Koschinsky M.L., Booth S.L. Subclinical vitamin k deficiency in hemodialysis patients. Am. J. Kidney Dis. 2007;49:432–439. doi: 10.1053/j.ajkd.2006.11.041.
    1. Schurgers L.J., Barreto D.V., Barreto F.C., Liabeuf S., Renard C., Magdeleyns E.J., Vermeer C., Choukroun G., Massy Z.A. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: A preliminary report. Clin. J. Am. Soc. Nephrol. 2010;5:568–575. doi: 10.2215/CJN.07081009.
    1. Shea M.K., O’Donnell C.J., Vermeer C., Magdeleyns E.J.P., Crosier M.D., Gundberg C.M., Ordovas J.M., Kritchevsky S.B., Booth S.L. Circulating uncarboxylated matrix gla protein is associated with vitamin k nutritional status, but not coronary artery calcium, in older adults. J. Nutr. 2011;141:1529–1534. doi: 10.3945/jn.111.139634.
    1. Ueland T., Gullestad L., Dahl C.P., Aukrust P., Aakhus S., Solberg O.G., Vermeer C., Schurgers L.J. Undercarboxylated matrix gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J. Intern. Med. 2010;268:483–492. doi: 10.1111/j.1365-2796.2010.02264.x.
    1. Ueland T., Dahl C.P., Gullestad L., Aakhus S., Broch K., Skardal R., Vermeer C., Aukrust P., Schurgers L.J. Circulating levels of non-phosphorylated undercarboxylated matrix gla protein are associated with disease severity in patients with chronic heart failure. Clin. Sci. 2011;121:119–127. doi: 10.1042/CS20100589.
    1. Cranenburg E.C., Koos R., Schurgers L.J., Magdeleyns E.J., Schoonbrood T.H., Landewe R.B., Brandenburg V.M., Bekers O., Vermeer C. Characterisation and potential diagnostic value of circulating matrix gla protein (mgp) species. Thromb. Haemost. 2010;104:811–822.
    1. Westenfeld R., Krueger T., Schlieper G., Cranenburg E.C., Magdeleyns E.J., Heidenreich S., Holzmann S., Vermeer C., Jahnen-Dechent W., Ketteler M., et al. Effect of vitamin k2 supplementation on functional vitamin k deficiency in hemodialysis patients: A randomized trial. Am. J. Kidney Dis. 2012;59:186–195. doi: 10.1053/j.ajkd.2011.10.041.
    1. Gonnet M., Lethuaut L., Boury F. New trends in encapsulation of liposoluble vitamins. J. Control. Release. 2010;146:276–290. doi: 10.1016/j.jconrel.2010.01.037.
    1. Gijsbers B.L., Jie K.S., Vermeer C. Effect of food composition on vitamin k absorption in human volunteers. Br. J. Nutr. 1996;76:223–229. doi: 10.1079/BJN19960027.
    1. Schurgers L.J., Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin k concentrations. Haemostasis. 2000;30:298–307.
    1. Beulens J.W.J., Bots M.L., Atsma F., Bartelink M.L.E.L., Prokop M., Geleijnse J.M., Witteman J.C.M., Grobbee D.E., van der Schouw Y.T. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 2009;203:489–493. doi: 10.1016/j.atherosclerosis.2008.07.010.
    1. Geleijnse J.M., Vermeer C., Grobbee D.E., Schurgers L.J., Knapen M.H., van der Meer I.M., Hofman A., Witteman J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The rotterdam study. J. Nutr. 2004;134:3100–3105.
    1. Kruger T., Oelenberg S., Kaesler N., Schurgers L.J., van de Sandt A.M., Boor P., Schlieper G., Brandenburg V.M., Fekete B.C., Veulemans V., et al. Warfarin induces cardiovascular damage in mice. Arterioscler. Thromb. Vasc. Biol. 2013;33:2618–2624. doi: 10.1161/ATVBAHA.113.302244.
    1. Schurgers L.J., Spronk H.M., Soute B.A., Schiffers P.M., DeMey J.G., Vermeer C. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin k in rats. Blood. 2007;109:2823–2831. doi: 10.1182/blood-2006-07-035345.
    1. Spronk H.M., Soute B.A., Schurgers L.J., Thijssen H.H., de Mey J.G., Vermeer C. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J. Vasc. Res. 2003;40:531–537. doi: 10.1159/000075344.
    1. Perez-Ruiz L., Ros-Lopez S., Cardus A., Fernandez E., Valdivielso J.M. A forgotten method to induce experimental chronic renal failure in the rat by ligation of the renal parenchyma. Nephron. Exp. Nephrol. 2006;103:e126–e130. doi: 10.1159/000092198.
    1. Ng K., Hildreth C.M., Phillips J.K., Avolio A.P. Aortic stiffness is associated with vascular calcification and remodeling in a chronic kidney disease rat model. Am. J. Physiol. Renal Physiol. 2011;300:F1431–F1436. doi: 10.1152/ajprenal.00079.2011.
    1. Shobeiri N., Adams M.A., Holden R.M. Vascular calcification in animal models of ckd: A review. Am. J. Nephrol. 2010;31:471–481. doi: 10.1159/000299794.
    1. Fleck C., Appenroth D., Jonas P., Koch M., Kundt G., Nizze H., Stein G. Suitability of 5/6 nephrectomy (5/6nx) for the induction of interstitial renal fibrosis in rats—Influence of sex, strain, and surgical procedure. Exp. Toxicol. Pathol. 2006;57:195–205. doi: 10.1016/j.etp.2005.09.005.
    1. El-Achkar T.M., Ohmit S.E., McCullough P.A., Crook E.D., Brown W.W., Grimm R., Bakris G.L., Keane W.F., Flack J.M. Higher prevalence of anemia with diabetes mellitus in moderate kidney insufficiency: The kidney early evaluation program. Kidney Int. 2005;67:1483–1488. doi: 10.1111/j.1523-1755.2005.00226.x.
    1. Shioi A., Katagi M., Okuno Y., Mori K., Jono S., Koyama H., Nishizawa Y. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: Roles of tumor necrosis factor-alpha and oncostatin m derived from macrophages. Circ. Res. 2002;91:9–16. doi: 10.1161/01.RES.0000026421.61398.F2.
    1. Kendrick J., Chonchol M. The role of phosphorus in the development and progression of vascular calcification. Am. J. Kidney Dis. 2011;58:826–834. doi: 10.1053/j.ajkd.2011.07.020.
    1. El-Abbadi M.M., Pai A.S., Leaf E.M., Yang H.Y., Bartley B.A., Quan K.K., Ingalls C.M., Liao H.W., Giachelli C.M. Phosphate feeding induces arterial medial calcification in uremic mice: Role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int. 2009;75:1297–1307. doi: 10.1038/ki.2009.83.
    1. Steitz S.A., Speer M.Y., Curinga G., Yang H.Y., Haynes P., Aebersold R., Schinke T., Karsenty G., Giachelli C.M. Smooth muscle cell phenotypic transition associated with calcification: Upregulation of cbfa1 and downregulation of smooth muscle lineage markers. Circ. Res. 2001;89:1147–1154. doi: 10.1161/hh2401.101070.
    1. Hakuno D., Kimura N., Yoshioka M., Mukai M., Kimura T., Okada Y., Yozu R., Shukunami C., Hiraki Y., Kudo A., et al. Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and mmp production in humans and rodents. J. Clin. Invest. 2010;120:2292–2306. doi: 10.1172/JCI40973.
    1. Hixson J.E., Shimmin L.C., Montasser M.E., Kim D.K., Zhong Y., Ibarguen H., Follis J., Malcom G., Strong J., Howard T., et al. Common variants in the periostin gene influence development of atherosclerosis in young persons. Arterioscler. Thromb. Vasc. Biol. 2011;31:1661–1667. doi: 10.1161/ATVBAHA.111.224352.
    1. Sen K., Lindenmeyer M.T., Gaspert A., Eichinger F., Neusser M.A., Kretzler M., Segerer S., Cohen C.D. Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am. J. Pathol. 2011;179:1756–1767. doi: 10.1016/j.ajpath.2011.06.002.
    1. Bostrom K., Watson K.E., Horn S., Wortham C., Herman I.M., Demer L.L. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 1993;91:1800–1809. doi: 10.1172/JCI116391.
    1. Ciceri P., Elli F., Brenna I., Volpi E., Romagnoli S., Tosi D., Braidotti P., Brancaccio D., Cozzolino M. Lanthanum prevents high phosphate-induced vascular calcification by preserving vascular smooth muscle lineage markers. Calcif. Tissue Int. 2013;92:521–530. doi: 10.1007/s00223-013-9709-7.
    1. Kaesler N., Magdeleyns E., Herfs M., Schettgen T., Brandenburg V., Fliser D., Vermeer C., Floege J., Schlieper G., Kruger T. Impaired vitamin k recycling in uremia is rescued by vitamin k supplementation. Kidney Int. 2014;86:286–293. doi: 10.1038/ki.2013.530.
    1. Tabb M.M., Sun A., Zhou C., Grun F., Errandi J., Romero K., Pham H., Inoue S., Mallick S., Lin M., et al. Vitamin k2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor sxr. J. Biol. Chem. 2003;278:43919–43927. doi: 10.1074/jbc.M303136200.
    1. Viegas C.S., Rafael M.S., Enriquez J.L., Teixeira A., Vitorino R., Luis I.M., Costa R.M., Santos S., Cavaco S., Neves J., et al. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler. Thromb. Vasc. Biol. 2015;35:399–408. doi: 10.1161/ATVBAHA.114.304823.
    1. Tsuchiya N., Matsushima S., Takasu N., Kyokawa Y., Torii M. Glomerular calcification induced by bolus injection with dibasic sodium phosphate solution in sprague-dawley rats. Toxicol. Pathol. 2004;32:408–412. doi: 10.1080/01926230490452490.
    1. Eknoyan G., Levin N.W. K/doqi clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002;39:S14–S266.
    1. McCarty M.F., DiNicolantonio J.J. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives. Nutrition. 2014;30:739–747. doi: 10.1016/j.nut.2013.12.010.
    1. Pucaj K., Rasmussen H., Moller M., Preston T. Safety and toxicological evaluation of a synthetic vitamin k2, menaquinone-7. Toxicol. Mech. Methods. 2011;21:520–532. doi: 10.3109/15376516.2011.568983.
    1. Holden R.M., Morton A.R., Garland J.S., Pavlov A., Day A.G., Booth S.L. Vitamins k and d status in stages 3–5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010;5:590–597. doi: 10.2215/CJN.06420909.
    1. Fusaro M., Noale M., Viola V., Galli F., Tripepi G., Vajente N., Plebani M., Zaninotto M., Guglielmi G., Miotto D., et al. Vitamin k, vertebral fractures, vascular calcifications, and mortality: Vitamin k italian (viki) dialysis study. J. Bone Miner. Res. 2012;27:2271–2278. doi: 10.1002/jbmr.1677.
    1. Brandenburg V.M., Schurgers L.J., Kaesler N., Pusche K., van Gorp R.H., Leftheriotis G., Reinartz S., Koos R., Kruger T. Prevention of vasculopathy by vitamin k supplementation: Can we turn fiction into fact? Atherosclerosis. 2015;240:10–16. doi: 10.1016/j.atherosclerosis.2015.02.040.
    1. Taddei S., Nami R., Bruno R.M., Quatrini I., Nuti R. Hypertension, left ventricular hypertrophy and chronic kidney disease. Heart Fail. Rev. 2011;16:615–620. doi: 10.1007/s10741-010-9197-z.
    1. Feihl F., Liaudet L., Levy B.I., Waeber B. Hypertension and microvascular remodelling. Cardiovasc. Res. 2008;78:274–285. doi: 10.1093/cvr/cvn022.
    1. Li S., Wang X., Li Y., Kost C.K., Jr., Martin D.S. Bortezomib, a proteasome inhibitor, attenuates angiotensin ii-induced hypertension and aortic remodeling in rats. PLoS One. 2013;8:e78564. doi: 10.1371/journal.pone.0078564.
    1. Ro A., Kageyama N. Pathomorphometry of ruptured intracranial vertebral arterial dissection: Adventitial rupture, dilated lesion, intimal tear, and medial defect. J. Neurosurg. 2013;119:221–227. doi: 10.3171/2013.2.JNS121586.

Source: PubMed

3
S'abonner