The effects of basal insulin peglispro vs. insulin glargine on lipoprotein particles by NMR and liver fat content by MRI in patients with diabetes

Trevor J Orchard, Bertrand Cariou, Margery A Connelly, James D Otvos, Shuyu Zhang, Caryl J Antalis, Tibor Ivanyi, Byron J Hoogwerf, Trevor J Orchard, Bertrand Cariou, Margery A Connelly, James D Otvos, Shuyu Zhang, Caryl J Antalis, Tibor Ivanyi, Byron J Hoogwerf

Abstract

Background: In Phase 2/3 studies of basal insulin peglispro (BIL) compared to insulin glargine, patients with type 1 or type 2 diabetes previously treated with insulin and randomized to BIL had an increase in serum triglycerides (TGs). To further understand lipoprotein changes, a lipid substudy which included liver fat content was designed to assess relationships among the measured variables for each diabetes cohort and compare the hepato-preferential insulin BIL to glargine.

Methods: In three cohorts of patients with diabetes (type 1, type 2 insulin naïve, and type 2 previously on insulin; n = 652), liver fat content (LFC) was determined by magnetic resonance imaging (MRI) and blood lipids were analyzed by nuclear magnetic resonance (NMR) spectroscopy at baseline, 26 and 52 weeks of treatment. Apolipoproteins, adiponectin, and other lipid parameters were also measured. Descriptive statistics were done, as well as correlation analyses to look for relationships among LFC and lipoproteins or other lipid measures.

Results: In patients with type 1 diabetes treated with BIL, but not glargine, small LDL and medium and large VLDL subclass concentrations increased from baseline. In patients with type 2 diabetes previously on insulin and treated with BIL, large VLDL concentration increased from baseline. In insulin naïve patients with type 2 diabetes treated with BIL, there were very few changes, while in those treated with glargine, small LDL and large VLDL decreased from baseline. Baseline LFC correlated significantly in one or more cohorts with baseline large VLDL, small LDL, VLDL size, and Apo C3. Changes in LFC by treatment showed generally weak correlations with lipoprotein changes, except for positive correlations with large VLDL and VLDL size. Adiponectin was higher in patients with type 1 diabetes compared to patients with type 2 diabetes, but decreased with treatment with both BIL and glargine.

Conclusions: The lipoprotein changes were in line with the observed changes in serum TGs; i.e., the cohorts experiencing increased TGs and LFC with BIL treatment had decreased LDL size and increased VLDL size. These data and analyses add to the currently available information on the metabolic effects of insulins in a very carefully characterized cohort of patients with diabetes. Clinicaltrials.gov registration numbers and dates NCT01481779 (2011), NCT01435616 (2011), NCT01454284 (2011), NCT01582451 (2012).

Keywords: Adiponectin; Apolipoproteins; Basal insulin peglispro; Diabetes; Insulin glargine; Lipoproteins; Liver fat; MRI; NMR.

Figures

Fig. 1
Fig. 1
LDL subclass and IDL particle concentratons by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 2

HDL, LDL, and VLDL particle…

Fig. 2

HDL, LDL, and VLDL particle size changes by treatment in three patient cohorts.…

Fig. 2
HDL, LDL, and VLDL particle size changes by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 3

VLDL and VLDL subclass particle…

Fig. 3

VLDL and VLDL subclass particle concentrations by treatment in three patient cohorts. Data…

Fig. 3
VLDL and VLDL subclass particle concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 4

HDL and HDL subclass particle…

Fig. 4

HDL and HDL subclass particle concentrations by treatment in three patient cohorts. Data…

Fig. 4
HDL and HDL subclass particle concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 5

Apolipoprotein concentrations by treatment in…

Fig. 5

Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ±…

Fig. 5
Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 6

Adiponectin change from baseline to…

Fig. 6

Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine…

Fig. 6
Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine or BIL. Data are LS mean ± SE; all between treatment differences had p ≥ 0.001. ***p T1D type 1 diabetes, T2D type 2 diabetes, BS basal switch cohort, IN insulin naïve cohort
Similar articles
Cited by
References
    1. Chaudhuri A, Rosenstock J, DiGenio A, Meneghini L, Hollander P, McGill JB, Dandona P, Ilgenfritz J, Riddle M. Comparing the effects of insulin glargine and thiazolidinediones on plasma lipids in type 2 diabetes: a patient-level pooled analysis. Diabetes Metab Res Rev. 2012;28(3):258–267. doi: 10.1002/dmrr.1305. - DOI - PMC - PubMed
    1. Chaudhuri A, Dandona P. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes. Diabetes Obes Metab. 2011;13(10):869–879. doi: 10.1111/j.1463-1326.2011.01423.x. - DOI - PubMed
    1. Hansen RJ, Cutler GB, Vick A, Koester A, Li S, Siesky AM, Beals JM. LY2605541: leveraging hydrodynamic size to develop a novel basal insulin. Diabetes. 2012;61(Suppl 1):A228.
    1. Mudaliar S, Henry RR, Ciaraldi TP, Armstrong DA, Burke PM, Pettus JH, Garhyan P, Choi SL, Knadler MP, Lam EC, et al. Reduced peripheral activity leading to hepato-preferential action of basal insulin peglispro compared with insulin glargine in patients with type 1 diabetes. Diabetes Obes Metab. 2016;18(Suppl 2):17–24. doi: 10.1111/dom.12753. - DOI - PubMed
    1. Jacober SJ, Prince MJ, Beals JM, Hartman ML, Qu Y, Linnebjerg H, Garhyan P, Haupt A. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab. 2016;18(Suppl 2):3–16. doi: 10.1111/dom.12744. - DOI - PubMed
Show all 51 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 2
Fig. 2
HDL, LDL, and VLDL particle size changes by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 3

VLDL and VLDL subclass particle…

Fig. 3

VLDL and VLDL subclass particle concentrations by treatment in three patient cohorts. Data…

Fig. 3
VLDL and VLDL subclass particle concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 4

HDL and HDL subclass particle…

Fig. 4

HDL and HDL subclass particle concentrations by treatment in three patient cohorts. Data…

Fig. 4
HDL and HDL subclass particle concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 5

Apolipoprotein concentrations by treatment in…

Fig. 5

Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ±…

Fig. 5
Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 6

Adiponectin change from baseline to…

Fig. 6

Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine…

Fig. 6
Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine or BIL. Data are LS mean ± SE; all between treatment differences had p ≥ 0.001. ***p T1D type 1 diabetes, T2D type 2 diabetes, BS basal switch cohort, IN insulin naïve cohort
Similar articles
Cited by
References
    1. Chaudhuri A, Rosenstock J, DiGenio A, Meneghini L, Hollander P, McGill JB, Dandona P, Ilgenfritz J, Riddle M. Comparing the effects of insulin glargine and thiazolidinediones on plasma lipids in type 2 diabetes: a patient-level pooled analysis. Diabetes Metab Res Rev. 2012;28(3):258–267. doi: 10.1002/dmrr.1305. - DOI - PMC - PubMed
    1. Chaudhuri A, Dandona P. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes. Diabetes Obes Metab. 2011;13(10):869–879. doi: 10.1111/j.1463-1326.2011.01423.x. - DOI - PubMed
    1. Hansen RJ, Cutler GB, Vick A, Koester A, Li S, Siesky AM, Beals JM. LY2605541: leveraging hydrodynamic size to develop a novel basal insulin. Diabetes. 2012;61(Suppl 1):A228.
    1. Mudaliar S, Henry RR, Ciaraldi TP, Armstrong DA, Burke PM, Pettus JH, Garhyan P, Choi SL, Knadler MP, Lam EC, et al. Reduced peripheral activity leading to hepato-preferential action of basal insulin peglispro compared with insulin glargine in patients with type 1 diabetes. Diabetes Obes Metab. 2016;18(Suppl 2):17–24. doi: 10.1111/dom.12753. - DOI - PubMed
    1. Jacober SJ, Prince MJ, Beals JM, Hartman ML, Qu Y, Linnebjerg H, Garhyan P, Haupt A. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab. 2016;18(Suppl 2):3–16. doi: 10.1111/dom.12744. - DOI - PubMed
Show all 51 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 3
Fig. 3
VLDL and VLDL subclass particle concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 4

HDL and HDL subclass particle…

Fig. 4

HDL and HDL subclass particle concentrations by treatment in three patient cohorts. Data…

Fig. 4
HDL and HDL subclass particle concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 5

Apolipoprotein concentrations by treatment in…

Fig. 5

Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ±…

Fig. 5
Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 6

Adiponectin change from baseline to…

Fig. 6

Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine…

Fig. 6
Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine or BIL. Data are LS mean ± SE; all between treatment differences had p ≥ 0.001. ***p T1D type 1 diabetes, T2D type 2 diabetes, BS basal switch cohort, IN insulin naïve cohort
Similar articles
Cited by
References
    1. Chaudhuri A, Rosenstock J, DiGenio A, Meneghini L, Hollander P, McGill JB, Dandona P, Ilgenfritz J, Riddle M. Comparing the effects of insulin glargine and thiazolidinediones on plasma lipids in type 2 diabetes: a patient-level pooled analysis. Diabetes Metab Res Rev. 2012;28(3):258–267. doi: 10.1002/dmrr.1305. - DOI - PMC - PubMed
    1. Chaudhuri A, Dandona P. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes. Diabetes Obes Metab. 2011;13(10):869–879. doi: 10.1111/j.1463-1326.2011.01423.x. - DOI - PubMed
    1. Hansen RJ, Cutler GB, Vick A, Koester A, Li S, Siesky AM, Beals JM. LY2605541: leveraging hydrodynamic size to develop a novel basal insulin. Diabetes. 2012;61(Suppl 1):A228.
    1. Mudaliar S, Henry RR, Ciaraldi TP, Armstrong DA, Burke PM, Pettus JH, Garhyan P, Choi SL, Knadler MP, Lam EC, et al. Reduced peripheral activity leading to hepato-preferential action of basal insulin peglispro compared with insulin glargine in patients with type 1 diabetes. Diabetes Obes Metab. 2016;18(Suppl 2):17–24. doi: 10.1111/dom.12753. - DOI - PubMed
    1. Jacober SJ, Prince MJ, Beals JM, Hartman ML, Qu Y, Linnebjerg H, Garhyan P, Haupt A. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab. 2016;18(Suppl 2):3–16. doi: 10.1111/dom.12744. - DOI - PubMed
Show all 51 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 4
Fig. 4
HDL and HDL subclass particle concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 5

Apolipoprotein concentrations by treatment in…

Fig. 5

Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ±…

Fig. 5
Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 6

Adiponectin change from baseline to…

Fig. 6

Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine…

Fig. 6
Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine or BIL. Data are LS mean ± SE; all between treatment differences had p ≥ 0.001. ***p T1D type 1 diabetes, T2D type 2 diabetes, BS basal switch cohort, IN insulin naïve cohort
Similar articles
Cited by
References
    1. Chaudhuri A, Rosenstock J, DiGenio A, Meneghini L, Hollander P, McGill JB, Dandona P, Ilgenfritz J, Riddle M. Comparing the effects of insulin glargine and thiazolidinediones on plasma lipids in type 2 diabetes: a patient-level pooled analysis. Diabetes Metab Res Rev. 2012;28(3):258–267. doi: 10.1002/dmrr.1305. - DOI - PMC - PubMed
    1. Chaudhuri A, Dandona P. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes. Diabetes Obes Metab. 2011;13(10):869–879. doi: 10.1111/j.1463-1326.2011.01423.x. - DOI - PubMed
    1. Hansen RJ, Cutler GB, Vick A, Koester A, Li S, Siesky AM, Beals JM. LY2605541: leveraging hydrodynamic size to develop a novel basal insulin. Diabetes. 2012;61(Suppl 1):A228.
    1. Mudaliar S, Henry RR, Ciaraldi TP, Armstrong DA, Burke PM, Pettus JH, Garhyan P, Choi SL, Knadler MP, Lam EC, et al. Reduced peripheral activity leading to hepato-preferential action of basal insulin peglispro compared with insulin glargine in patients with type 1 diabetes. Diabetes Obes Metab. 2016;18(Suppl 2):17–24. doi: 10.1111/dom.12753. - DOI - PubMed
    1. Jacober SJ, Prince MJ, Beals JM, Hartman ML, Qu Y, Linnebjerg H, Garhyan P, Haupt A. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab. 2016;18(Suppl 2):3–16. doi: 10.1111/dom.12744. - DOI - PubMed
Show all 51 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 5
Fig. 5
Apolipoprotein concentrations by treatment in three patient cohorts. Data are LS mean ± SE. p values are given for between-treatment differences where p 

Fig. 6

Adiponectin change from baseline to…

Fig. 6

Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine…

Fig. 6
Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine or BIL. Data are LS mean ± SE; all between treatment differences had p ≥ 0.001. ***p T1D type 1 diabetes, T2D type 2 diabetes, BS basal switch cohort, IN insulin naïve cohort
Fig. 6
Fig. 6
Adiponectin change from baseline to 26 and 52 weeks of treatment with glargine or BIL. Data are LS mean ± SE; all between treatment differences had p ≥ 0.001. ***p T1D type 1 diabetes, T2D type 2 diabetes, BS basal switch cohort, IN insulin naïve cohort

References

    1. Chaudhuri A, Rosenstock J, DiGenio A, Meneghini L, Hollander P, McGill JB, Dandona P, Ilgenfritz J, Riddle M. Comparing the effects of insulin glargine and thiazolidinediones on plasma lipids in type 2 diabetes: a patient-level pooled analysis. Diabetes Metab Res Rev. 2012;28(3):258–267. doi: 10.1002/dmrr.1305.
    1. Chaudhuri A, Dandona P. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes. Diabetes Obes Metab. 2011;13(10):869–879. doi: 10.1111/j.1463-1326.2011.01423.x.
    1. Hansen RJ, Cutler GB, Vick A, Koester A, Li S, Siesky AM, Beals JM. LY2605541: leveraging hydrodynamic size to develop a novel basal insulin. Diabetes. 2012;61(Suppl 1):A228.
    1. Mudaliar S, Henry RR, Ciaraldi TP, Armstrong DA, Burke PM, Pettus JH, Garhyan P, Choi SL, Knadler MP, Lam EC, et al. Reduced peripheral activity leading to hepato-preferential action of basal insulin peglispro compared with insulin glargine in patients with type 1 diabetes. Diabetes Obes Metab. 2016;18(Suppl 2):17–24. doi: 10.1111/dom.12753.
    1. Jacober SJ, Prince MJ, Beals JM, Hartman ML, Qu Y, Linnebjerg H, Garhyan P, Haupt A. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab. 2016;18(Suppl 2):3–16. doi: 10.1111/dom.12744.
    1. Bergenstal RM, Rosenstock J, Arakaki RF, Prince MJ, Qu Y, Sinha VP, Howey DC, Jacober SJ. A randomized, controlled study of once-daily LY2605541, a novel long-acting basal insulin, versus insulin glargine in basal insulin-treated patients with type 2 diabetes. Diabetes Care. 2012;35(11):2140–2147. doi: 10.2337/dc12-0060.
    1. Rosenstock J, Bergenstal RM, Blevins TC, Morrow LA, Prince MJ, Qu Y, Sinha VP, Howey DC, Jacober SJ. Better glycemic control and weight loss with the novel long-acting basal insulin LY2605541 compared with insulin glargine in type 1 diabetes: a randomized, crossover study. Diabetes Care. 2013;36(3):522–528. doi: 10.2337/dc12-0067.
    1. Ginsberg H, Cariou B, Orchard T, Chen L, Luo J, Bastyr EJ, 3rd, Bue-Valleskey J, Chang AM, Ivanyi T, Jacober SJ, et al. Lipid changes during basal insulin peglispro, insulin glargine, or NPH treatment in six IMAGINE trials. Diabetes Obes Metab. 2016;18(11):1089–1092. doi: 10.1111/dom.12754.
    1. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26(4):847–870. doi: 10.1016/j.cll.2006.07.006.
    1. Mashhood A, Railkar R, Yokoo T, Levin Y, Clark L, Fox-Bosetti S, Middleton MS, Riek J, Kauh E, Dardzinski BJ, et al. Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging. J Magn Reson Imaging. 2013;37(6):1359–1370. doi: 10.1002/jmri.23928.
    1. Cusi K, Sanyal AJ, Zhang S, Hoogwerf BJ, Chang AM, Jacober SJ, Bue-Valleskey JM, Higdon AN, Bastyr EJ, 3rd, Haupt A, et al. Different effects of basal insulin peglispro and insulin glargine on liver enzymes and liver fat content in patients with type 1 and type 2 diabetes. Diabetes Obes Metab. 2016;18(Suppl 2):50–58. doi: 10.1111/dom.12751.
    1. Cusi K, Sanyal A, Zhang S, Hartman ML, Bue-Valleskey J, Hoogwerf BJ, Haupt A. NAFLD prevalence and its metabolic associations in patients with type 1 diabetes and type 2 diabetes. Diabetes Obes Metab. 2017
    1. Davies MJ, Russell-Jones D, Selam JL, Bailey TS, Kerenyi Z, Luo J, Bue-Valleskey J, Ivanyi T, Hartman ML, Jacobson JG, et al. Basal insulin peglispro versus insulin glargine in insulin-naive type 2 diabetes: IMAGINE 2 randomized trial. Diabetes Obes Metab. 2016;18(11):1055–1064. doi: 10.1111/dom.12712.
    1. Garg S, Dreyer M, Jinnouchi H, Mou J, Qu Y, Hartman ML, Rosilio M, Jacober SJ, Bastyr EJ, 3rd, Investigators IT. A randomized clinical trial comparing basal insulin peglispro and insulin glargine, in combination with prandial insulin lispro, in patients with type 1 diabetes: IMAGINE 1. Diabetes Obes Metab. 2016;18(Suppl 2):25–33. doi: 10.1111/dom.12738.
    1. Bergenstal RM, Lunt H, Franek E, Travert F, Mou J, Qu Y, Antalis CJ, Hartman ML, Rosilio M, Jacober SJ, et al. Randomized, double-blind clinical trial comparing basal insulin peglispro and insulin glargine, in combination with prandial insulin lispro, in patients with type 1 diabetes: IMAGINE 3. Diabetes Obes Metab. 2016;18(11):1081–1088. doi: 10.1111/dom.12698.
    1. Buse JB, Rodbard HW, Trescoli Serrano C, Luo J, Ivanyi T, Bue-Valleskey J, Hartman ML, Carey MA, Chang AM. Randomized clinical trial comparing basal insulin peglispro and insulin glargine in patients with type 2 diabetes previously treated with basal insulin: IMAGINE 5. Diabetes Care. 2016;39(1):92–100. doi: 10.2337/dc15-1531.
    1. de la Llera-Moya M, Drazul-Schrader D, Asztalos BF, Cuchel M, Rader DJ, Rothblat GH. The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler Thromb Vasc Biol. 2010;30(4):796–801. doi: 10.1161/ATVBAHA.109.199158.
    1. Kempen HJ, Gomaraschi M, Bellibas SE, Plassmann S, Zerler B, Collins HL, Adelman SJ, Calabresi L, Wijngaard PL. Effect of repeated apoA-IMilano/POPC infusion on lipids, (apo)lipoproteins, and serum cholesterol efflux capacity in cynomolgus monkeys. J Lipid Res. 2013;54(9):2341–2353. doi: 10.1194/jlr.M033779.
    1. Purnell JQ, Marcovina SM, Hokanson JE, Kennedy H, Cleary PA, Steffes MW, Brunzell JD. Levels of lipoprotein(a), apolipoprotein B, and lipoprotein cholesterol distribution in IDDM. Results from follow-up in the diabetes control and complications trial. Diabetes. 1995;44(10):1218–1226. doi: 10.2337/diab.44.10.1218.
    1. Erbey JR, Robbins D, Forrest KY, Orchard TJ. Low-density lipoprotein particle size and coronary artery disease in a childhood-onset type 1 diabetes population. Metabolism. 1999;48(4):531–534. doi: 10.1016/S0026-0495(99)90116-6.
    1. Colhoun HM, Otvos JD, Rubens MB, Taskinen MR, Underwood SR, Fuller JH. Lipoprotein subclasses and particle sizes and their relationship with coronary artery calcification in men and women with and without type 1 diabetes. Diabetes. 2002;51(6):1949–1956. doi: 10.2337/diabetes.51.6.1949.
    1. Soedamah-Muthu SS, Chang YF, Otvos J, Evans RW, Orchard TJ, Pittsburgh Epidemiology of Diabetes Complications S Lipoprotein subclass measurements by nuclear magnetic resonance spectroscopy improve the prediction of coronary artery disease in Type 1 diabetes. A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2003;46(5):674–682. doi: 10.1007/s00125-003-1094-8.
    1. Lyons TJ, Jenkins AJ, Zheng D, Klein RL, Otvos JD, Yu Y, Lackland DT, McGee D, McHenry MB, Lopes-Virella M, et al. Nuclear magnetic resonance-determined lipoprotein subclass profile in the DCCT/EDIC cohort: associations with carotid intima-media thickness. Diabet Med. 2006;23(9):955–966. doi: 10.1111/j.1464-5491.2006.01905.x.
    1. Zhang Y, Jenkins AJ, Basu A, Stoner JA, Lopes-Virella MF, Klein RL, Group DER. Lyons TJ. Associations between intensive diabetes therapy and NMR-determined lipoprotein subclass profiles in type 1 diabetes. J Lipid Res. 2016;57(2):310–317.
    1. Taskinen MR, Kuusi T, Helve E, Nikkila EA, Yki-Jarvinen H. Insulin therapy induces antiatherogenic changes of serum lipoproteins in noninsulin-dependent diabetes. Arteriosclerosis. 1988;8(2):168–177. doi: 10.1161/01.ATV.8.2.168.
    1. Romano G, Patti L, Innelli F, Di Marino L, Annuzzi G, Iavicoli M, Coronel GA, Riccardi G, Rivellese AA. Insulin and sulfonylurea therapy in NIDDM patients. Are the effects on lipoprotein metabolism different even with similar blood glucose control? Diabetes. 1997;46(10):1601–1606. doi: 10.2337/diacare.46.10.1601.
    1. Rivellese AA, Patti L, Romano G, Innelli F, Di Marino L, Annuzzi G, Iavicoli M, Coronel GA, Riccardi G. Effect of insulin and sulfonylurea therapy, at the same level of blood glucose control, on low density lipoprotein subfractions in type 2 diabetic patients. J Clin Endocrinol Metab. 2000;85(11):4188–4192.
    1. Koska J, Saremi A, Bahn G, Yamashita S, Reaven PD, Veterans Affairs Diabetes Trial I The effect of intensive glucose lowering on lipoprotein particle profiles and inflammatory markers in the Veterans Affairs Diabetes Trial (VADT) Diabetes Care. 2013;36(8):2408–2414. doi: 10.2337/dc12-2082.
    1. Aslan I, Kucuksayan E, Aslan M. Effect of insulin analog initiation therapy on LDL/HDL subfraction profile and HDL associated enzymes in type 2 diabetic patients. Lipids Health Dis. 2013;12:54. doi: 10.1186/1476-511X-12-54.
    1. Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28(7):1225–1236. doi: 10.1161/ATVBAHA.107.160192.
    1. Hoogwerf BJ, Lincoff AM, Rodriguez A, Chen L, Qu Y. Major adverse cardiovascular events with basal insulin peglispro versus comparator insulins in patients with type 1 or type 2 diabetes: a meta-analysis. Cardiovasc Diabetol. 2016;15(1):78. doi: 10.1186/s12933-016-0393-6.
    1. Taskinen MR, Boren J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015;239(2):483–495. doi: 10.1016/j.atherosclerosis.2015.01.039.
    1. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106(4):453–458. doi: 10.1172/JCI10762.
    1. Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin—a key adipokine in the metabolic syndrome. Diabetes Obes Metab. 2006;8(3):264–280. doi: 10.1111/j.1463-1326.2005.00510.x.
    1. Tishinsky JM, Robinson LE, Dyck DJ. Insulin-sensitizing properties of adiponectin. Biochimie. 2012;94(10):2131–2136. doi: 10.1016/j.biochi.2012.01.017.
    1. Cui J, Panse S, Falkner B. The role of adiponectin in metabolic and vascular disease: a review. Clin Nephrol. 2011;75(1):26–33.
    1. Wu Z, Cheng Y, Aung LH, Li B. Association between adiponectin concentrations and cardiovascular disease in diabetic patients: a systematic review and meta-analysis. PLoS ONE. 2013;8(11):e78485. doi: 10.1371/journal.pone.0078485.
    1. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–1935. doi: 10.1210/jcem.86.5.7463.
    1. Galler A, Gelbrich G, Kratzsch J, Noack N, Kapellen T, Kiess W. Elevated serum levels of adiponectin in children, adolescents and young adults with type 1 diabetes and the impact of age, gender, body mass index and metabolic control: a longitudinal study. Eur J Endocrinol. 2007;157(4):481–489. doi: 10.1530/EJE-07-0250.
    1. Heilman K, Zilmer M, Zilmer K, Kool P, Tillmann V. Elevated plasma adiponectin and decreased plasma homocysteine and asymmetric dimethylarginine in children with type 1 diabetes. Scand J Clin Lab Invest. 2009;69(1):85–91. doi: 10.1080/00365510802419454.
    1. Imagawa A, Funahashi T, Nakamura T, Moriwaki M, Tanaka S, Nishizawa H, Sayama K, Uno S, Iwahashi H, Yamagata K, et al. Elevated serum concentration of adipose-derived factor, adiponectin, in patients with type 1 diabetes. Diabetes Care. 2002;25(9):1665–1666. doi: 10.2337/diacare.25.9.1665.
    1. Maahs DM, Ogden LG, Snell-Bergeon JK, Kinney GL, Wadwa RP, Hokanson JE, Dabelea D, Kretowski A, Eckel RH, Rewers M. Determinants of serum adiponectin in persons with and without type 1 diabetes. Am J Epidemiol. 2007;166(6):731–740. doi: 10.1093/aje/kwm125.
    1. Perseghin G, Lattuada G, Danna M, Sereni LP, Maffi P, De Cobelli F, Battezzati A, Secchi A, Del Maschio A, Luzi L. Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab. 2003;285(6):E1174–E1181. doi: 10.1152/ajpendo.00279.2003.
    1. Timar R, Timar B, Degeratu D, Serafinceanu C, Oancea C. Metabolic syndrome, adiponectin and proinflammatory status in patients with type 1 diabetes mellitus. J Int Med Res. 2014;42(5):1131–1138. doi: 10.1177/0300060514541829.
    1. Wolff L, Bos D, Murad SD, Franco OH, Krestin GP, Hofman A, Vernooij MW, van der Lugt A. Liver fat is related to cardiovascular risk factors and subclinical vascular disease: the Rotterdam Study. Eur Heart J Cardiovasc Imaging. 2016;17(12):1361–1367. doi: 10.1093/ehjci/jew174.
    1. Arulanandan A, Ang B, Bettencourt R, Hooker J, Behling C, Lin GY, Valasek MA, Ix JH, Schnabl B, Sirlin CB, et al. Association between quantity of liver fat and cardiovascular risk in patients with nonalcoholic fatty liver disease independent of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2015;13(8):1513–1520. doi: 10.1016/j.cgh.2015.01.027.
    1. Lonardo A, Ballestri S, Guaraldi G, Nascimbeni F, Romagnoli D, Zona S, Targher G. Fatty liver is associated with an increased risk of diabetes and cardiovascular disease—Evidence from three different disease models: NAFLD, HCV and HIV. World J Gastroenterol. 2016;22(44):9674–9693. doi: 10.3748/wjg.v22.i44.9674.
    1. Targher G, Bertolini L, Scala L, Poli F, Zenari L, Falezza G. Decreased plasma adiponectin concentrations are closely associated with nonalcoholic hepatic steatosis in obese individuals. Clin Endocrinol (Oxf) 2004;61(6):700–703. doi: 10.1111/j.1365-2265.2004.02151.x.
    1. Bril F, Sninsky JJ, Baca AM, Superko HR, Portillo Sanchez P, Biernacki D, Maximos M, Lomonaco R, Orsak B, Suman A, et al. Hepatic steatosis and insulin resistance, but not steatohepatitis, promote atherogenic dyslipidemia in NAFLD. J Clin Endocrinol Metab. 2016;101(2):644–652. doi: 10.1210/jc.2015-3111.
    1. Leon-Acuna A, Alcala-Diaz JF, Delgado-Lista J, Torres-Pena JD, Lopez-Moreno J, Camargo A, Garcia-Rios A, Marin C, Gomez-Delgado F, Caballero J, et al. Hepatic insulin resistance both in prediabetic and diabetic patients determines postprandial lipoprotein metabolism: from the CORDIOPREV study. Cardiovasc Diabetol. 2016;15:68. doi: 10.1186/s12933-016-0380-y.
    1. Russell-Jones DL. Hepato-preferential insulins: Is this the end, or the end of the beginning? Diabetes Obes Metab. 2016;18(11):1053–1054. doi: 10.1111/dom.12756.

Source: PubMed

3
S'abonner