Application of an EMG-Rehabilitation Robot in Patients with Post-Coronavirus Fatigue Syndrome (COVID-19)-A Feasibility Study

Ewa Zasadzka, Sławomir Tobis, Tomasz Trzmiel, Renata Marchewka, Dominika Kozak, Anna Roksela, Anna Pieczyńska, Katarzyna Hojan, Ewa Zasadzka, Sławomir Tobis, Tomasz Trzmiel, Renata Marchewka, Dominika Kozak, Anna Roksela, Anna Pieczyńska, Katarzyna Hojan

Abstract

This pilot study aimed to assess the safety and feasibility of an EMG-driven rehabilitation robot in patients with Post-Viral Fatigue (PVF) syndrome after COVID-19. The participants were randomly assigned to two groups (IG-intervention group and CG-control group) in an inpatient neurological rehabilitation unit. Both groups were assessed on admission and after six weeks of rehabilitation. Rehabilitation was carried out six days a week for six weeks. The patients in the IG performed additional training using an EMG rehabilitation robot. Muscle fatigue was assessed using an EMG rehabilitation robot; secondary outcomes were changes in hand grip strength, Fatigue Assessment Scale, and functional assessment scales (Functional Independence Measure, Barthel Index). Both groups improved in terms of the majority of measured parameters comparing pre- and post-intervention results, except muscle fatigue. Muscle fatigue scores presented non-significant improvement in the IG and non-significant deterioration in the CG. Using an EMG rehabilitation robot in patients with PVF can be feasible and safe. To ascertain the effectiveness of such interventions, more studies are needed, particularly involving a larger sample and also assessing the participants' cognitive performance.

Trial registration: ClinicalTrials.gov NCT05130736.

Keywords: SARS-CoV-2; exercises; hand grip strength; occupational therapy; physiotherapy.

Conflict of interest statement

D.K. (clinical specialist in physiotherapy) and A.R. (biomedical engineer) are employees of the EGZOTech company, which designed the Luna EMG robot.

Figures

Figure 1
Figure 1
An example of the EMG robot setup during the exercises (source: authors’ own).
Figure 2
Figure 2
Study participants flowchart.

References

    1. Mao R., Qiu Y., He J.-S., Tan J.-Y., Li X.-H., Liang J., Shen J., Zhu L.-R., Chen Y., Iacucci M., et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020;5:667–678. doi: 10.1016/S2468-1253(20)30126-6.
    1. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7:e438–e440. doi: 10.1016/S2352-3026(20)30145-9.
    1. Long B., Brady W.J., Koyfman A., Gottlieb M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020;38:1504–1507. doi: 10.1016/j.ajem.2020.04.048.
    1. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683–690. doi: 10.1001/jamaneurol.2020.1127.
    1. Middeldorp S., Coppens M., van Haaps T.F., Foppen M., Vlaar A.P., Müller M.C.A., Bouman C.C.S., Beenen L.F.M., Kootte R.S., Heijmans J., et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020;18:1995–2002. doi: 10.1111/jth.14888.
    1. Chen Y.-T., Shao S.-C., Hsu C.-K., Wu I.-W., Hung M.-J., Chen Y.-C. Incidence of acute kidney injury in COVID-19 infection: A systematic review and meta-analysis. Crit. Care. 2020;24:346. doi: 10.1186/s13054-020-03009-y.
    1. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More than 50 Long-term effects of COVID-19: A systematic review and meta-analysis. medRxiv. 2021 doi: 10.1101/2021.01.27.21250617.
    1. Townsend L., Dowds J., O’Brien K., Sheill G., Dyer A.H., O’Kelly B., Hynes J.P., Mooney A., Dunne J., Ni Cheallaigh C., et al. Persistent Poor Health after COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann. Am. Thorac. Soc. 2021;18:997–1003. doi: 10.1513/AnnalsATS.202009-1175OC.
    1. Townsend L., Dyer A.H., Jones K., Dunne J., Mooney A., Gaffney F., O’Connor L., Leavy D., O’Brien K., Dowds J., et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020;15:e0240784. doi: 10.1371/journal.pone.0240784.
    1. World Health Organization International Classification of Diseases for Mortality and Morbidity Statistics (11th Revision) [(accessed on 14 March 2022)]. Available online: .
    1. Ostojic S.M. Diagnostic and Pharmacological Potency of Creatine in Post-Viral Fatigue Syndrome. Nutrients. 2021;13:503. doi: 10.3390/nu13020503.
    1. Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med. Hypotheses. 2021;146:110469. doi: 10.1016/j.mehy.2020.110469.
    1. Tansey C.M., Louie M., Loeb M., Gold W.L., Muller M.P., de Jager J., Cameron J.I., Tomlinson G., Mazzulli T., Walmsley S.L., et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch. Intern. Med. 2007;167:1312–1320. doi: 10.1001/archinte.167.12.1312.
    1. Archer M.I. The post-viral syndrome: A review. J. R. Coll. Gen. Pract. 1987;37:212–214.
    1. Moldofsky H., Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011;11:37. doi: 10.1186/1471-2377-11-37.
    1. Kashif A., Chaudhry M., Fayyaz T., Abdullah M., Malik A., Anwer J.M.A., Inam S.H.A., Fatima T., Iqbal N., Shoaib K. Follow-up of COVID-19 recovered patients with mild disease. Sci. Rep. 2021;11:13414. doi: 10.1038/s41598-021-92717-8.
    1. Del Rio C., Malani P.N. COVID-19-New Insights on a Rapidly Changing Epidemic. JAMA. 2020;323:1339–1340. doi: 10.1001/jama.2020.3072.
    1. Perrin R., Riste L., Hann M., Walther A., Mukherjee A., Heald A. Into the looking glass: Post-viral syndrome post COVID-19. Med. Hypotheses. 2020;144:110055. doi: 10.1016/j.mehy.2020.110055.
    1. Vink M., Vink-Niese A. Could Cognitive Behavioural Therapy Be an Effective Treatment for Long COVID and Post COVID-19 Fatigue Syndrome? Lessons from the Qure Study for Q-Fever Fatigue Syndrome. Healthcare. 2020;8:552. doi: 10.3390/healthcare8040552.
    1. Pallanti S., Grassi E., Makris N., Gasic G.P., Hollander E. Neurocovid-19: A clinical neuroscience-based approach to reduce SARS-CoV-2 related mental health sequelae. J. Psychiatr. Res. 2020;130:215–217. doi: 10.1016/j.jpsychires.2020.08.008.
    1. Lamprecht B. Gibt es ein Post-COVID-Syndrom? Pneumologe. 2020;17:398–405. doi: 10.1007/s10405-020-00347-0.
    1. Yong S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021;53:737–754. doi: 10.1080/23744235.2021.1924397.
    1. Raveendran A.V., Jayadevan R., Sashidharan S. Long COVID: An overview. Diabetes Metab. Syndr. 2021;15:869–875. doi: 10.1016/j.dsx.2021.04.007.
    1. Nekhlyudov L., Duijts S., Hudson S.V., Jones J.M., Keogh J., Love B., Lustberg M., Smith K.C., Tevaarwerk A., Yu X., et al. Addressing the needs of cancer survivors during the COVID-19 pandemic. J. Cancer Surviv. 2020;14:601–606. doi: 10.1007/s11764-020-00884-w.
    1. Zasadzka E., Pieczyńska A., Trzmiel T., Hojan K. Virtual Reality as a Promising Tool Supporting Oncological Treatment in Breast Cancer. Int. J. Environ. Res. Public Health. 2021;18:8768. doi: 10.3390/ijerph18168768.
    1. Calabrò R.S., Filoni S., Billeri L., Balletta T., Cannavò A., Militi A., Milardi D., Pignolo L., Naro A. Robotic Rehabilitation in Spinal Cord Injury: A Pilot Study on End-Effectors and Neurophysiological Outcomes. Ann. Biomed. Eng. 2021;49:732–745. doi: 10.1007/s10439-020-02611-z.
    1. Middaugh S., Thomas K.J., Smith A.R., McFall T.L., Klingmueller J. EMG Biofeedback and Exercise for Treatment of Cervical and Shoulder Pain in Individuals with a Spinal Cord Injury: A Pilot Study. Top. Spinal Cord Inj. Rehabil. 2013;19:311–323. doi: 10.1310/sci1904-311.
    1. Tamburella F., Moreno J.C., Herrera Valenzuela D.S., Pisotta I., Iosa M., Cincotti F., Mattia D., Pons J.L., Molinari M. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: Electromyographic vs joint torque biofeedback. J. Neuroeng. Rehabil. 2019;16:95. doi: 10.1186/s12984-019-0558-0.
    1. Carod-Artal F.J. Síndrome post-COVID-19: Epidemiología, criterios diagnósticos y mecanismos patogénicos implicados. Rev. Neurol. 2021;72:384–396. doi: 10.33588/rn.7211.2021230.
    1. Linacre J.M., Heinemann A.W., Wright B.D., Granger C.V., Hamilton B.B. The structure and stability of the Functional Independence Measure. Arch. Phys. Med. Rehabil. 1994;75:127–132. doi: 10.1016/0003-9993(94)90384-0.
    1. Heinemann A.W., Linacre J.M., Wright B.D., Hamilton B.B., Granger C. Relationships between impairment and physical disability as measured by the functional independence measure. Arch. Phys. Med. Rehabil. 1993;74:566–573. doi: 10.1016/0003-9993(93)90153-2.
    1. Mahoney F.I., Barthel D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965;14:61–65.
    1. MacDermid J.C., Solomon G.S., Valdes K.A. Clinical Assessment Recommendations. 3rd ed. American Society of Hand Therapists; Mount Laurel, NJ, USA: 2015.
    1. De Vries J., Michielsen H., van Heck G.L., Drent M. Measuring fatigue in sarcoidosis: The Fatigue Assessment Scale (FAS) Br. J. Health Psychol. 2004;9:279–291. doi: 10.1348/1359107041557048.
    1. Hermens H.J., Freriks B., Disselhorst-Klug C., Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000;10:361–374. doi: 10.1016/S1050-6411(00)00027-4.
    1. Ranzani R., Lambercy O., Metzger J.-C., Califfi A., Regazzi S., Dinacci D., Petrillo C., Rossi P., Conti F.M., Gassert R. Neurocognitive robot-assisted rehabilitation of hand function: A randomized control trial on motor recovery in subacute stroke. J. Neuroeng. Rehabil. 2020;17:115. doi: 10.1186/s12984-020-00746-7.
    1. Villafañe J.H., Taveggia G., Galeri S., Bissolotti L., Mullè C., Imperio G., Valdes K., Borboni A., Negrini S. Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand. 2018;13:95–102. doi: 10.1177/1558944717692096.
    1. Bustamante Valles K., Montes S., Madrigal M.d.J., Burciaga A., Martínez M.E., Johnson M.J. Technology-assisted stroke rehabilitation in Mexico: A pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym. J. Neuroeng. Rehabil. 2016;13:83. doi: 10.1186/s12984-016-0190-1.
    1. Nam K.Y., Kim H.J., Kwon B.S., Park J.-W., Lee H.J., Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. J. Neuroeng. Rehabil. 2017;14:24. doi: 10.1186/s12984-017-0232-3.
    1. Szczegielniak J., Bogacz K., Majorczyk E., Szczegielniak A., Łuniewski J. Post-COVID-19 rehabilitation—A Polish pilot program. Med. Pr. 2021;72:611–616. doi: 10.13075/mp.5893.01122.
    1. Kurtaiş Aytür Y., Füsun Köseoglu B., Özyemişci Taşkıran Ö., Kutay Ordu Gökkaya N., Ünsal Delialioğlu S., Sonel Tur B., Sarıkaya S., Şirzai H., Tekdemir Tiftik T., Alemdaroglu E., et al. Pulmonary rehabilitation principles in SARS-CoV-2 infection (COVID-19): The revised guideline for the acute, subacute, and post-COVID-19 rehabilitation. Turk. J. Phys. Med. Rehabil. 2021;67:129–145. doi: 10.5606/tftrd.2021.8821.
    1. Agostini F., Mangone M., Ruiu P., Paolucci T., Santilli V., Bernetti A. Rehabilitation setting during and after COVID-19: An overview on recommendations. J. Rehabil. Med. 2021;53:2737. doi: 10.2340/16501977-2776.
    1. Spielmanns M., Pekacka-Egli A.-M., Schoendorf S., Windisch W., Hermann M. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. Int. J. Environ. Res. Public Health. 2021;18:2695. doi: 10.3390/ijerph18052695.
    1. Udina C., Ars J., Morandi A., Vilaró J., Cáceres C., Inzitari M. Rehabilitation in adult post-COVID-19 patients in post-acute care with Therapeutic Exercise. J. Frailty Aging. 2021;10:297–300. doi: 10.14283/jfa.2021.1.
    1. Nopp S., Moik F., Klok F.A., Gattinger D., Petrovic M., Vonbank K., Koczulla A.R., Ay C., Zwick R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respiration. 2022;101:593–601. doi: 10.1159/000522118.
    1. Daynes E., Gerlis C., Chaplin E., Gardiner N., Singh S.J. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition—A cohort study. Chronic Respir. Dis. 2021;18:14799731211015691. doi: 10.1177/14799731211015691.
    1. Kim G.J., Taub M., Creelman C., Cahalan C., O’Dell M.W., Stein J. Feasibility of an Electromyography-Triggered Hand Robot for People After Chronic Stroke. Am. J. Occup. Ther. 2019;73:7304345040p1–7304345040p9. doi: 10.5014/ajot.2019.030908.
    1. Singer B.J., Vallence A.-M., Cleary S., Cooper I., Loftus A.M. The effect of EMG triggered electrical stimulation plus task practice on arm function in chronic stroke patients with moderate-severe arm deficits. Restor. Neurol. Neurosci. 2013;31:681–691. doi: 10.3233/RNN-130319.

Source: PubMed

3
S'abonner