The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery

Annette Gower, Mario Tiberi, Annette Gower, Mario Tiberi

Abstract

Dopamine, a major neurotransmitter, plays a role in a wide range of brain sensorimotor functions. Parkinson's disease and schizophrenia are two major human neuropsychiatric disorders typically associated with dysfunctional dopamine activity levels, which can be alleviated through the druggability of the dopaminergic systems. Meanwhile, several studies suggest that optimal brain dopamine activity levels are also significantly impacted in other serious neurological conditions, notably stroke, but this has yet to be fully appreciated at both basic and clinical research levels. This is of utmost importance as there is a need for better treatments to improve recovery from stroke. Here, we discuss the state of knowledge regarding the modulation of dopaminergic systems following stroke, and the use of dopamine boosting therapies in animal stroke models to improve stroke recovery. Indeed, studies in animals and humans show stroke leads to changes in dopamine functioning. Moreover, evidence from animal stroke models suggests stimulation of dopamine receptors may be a promising therapeutic approach for enhancing motor recovery from stroke. With respect to the latter, we discuss the evidence for several possible receptor-linked mechanisms by which improved motor recovery may be mediated. One avenue of particular promise is the subtype-selective stimulation of dopamine receptors in conjunction with physical therapy. However, results from clinical trials so far have been more mixed due to a number of potential reasons including, targeting of the wrong patient populations and use of drugs which modulate a wide array of receptors. Notwithstanding these issues, it is hoped that future research endeavors will assist in the development of more refined dopaminergic therapeutic approaches to enhance stroke recovery.

Keywords: L-DOPA; amphetamine; animal stroke models; clinical trials; dopamine receptors; motor recovery; pharmacotherapy; stroke recovery.

Figures

Figure 1
Figure 1
Concept map of the potential mechanisms of action for DA-enhancing pharmacotherapies in poststroke recovery. Mechanisms of actions and effects evoked by DA-enhancing drugs, which are likely to be primarily mediated through D1- and D2-class receptors, are depicted in colored boxes. The DA-enhancing actions culminating in astrocytic-dependent regulatory processes are in yellow while those involving the recruitment of neuronal signaling partners and modulation of synaptic adaptation are in green. Immune and inflammatory-linked events are in blue. Lastly, changes at the level of cerebral cortex are shown in red.

References

    1. Abe K., Kashiwagi Y., Tokumura M., Hosoi R., Hatazawa J., Inoue O. (2004). Discrepancy between cell injury and benzodiazepine receptor binding after transient middle cerebral artery occlusion in rats. Synapse 53, 234–239. 10.1002/syn.20057
    1. Acler M., Manganotti P. (2013). Role, indications and controversies of levodopa administration in chronic stroke patients. Eur. J. Phys. Rehabil. Med. 49, 243–249.
    1. Acler M., Fiaschi A., Manganotti P. (2009). Long-term levodopa administration in chronic stroke patients. A clinical and neurophysiologic single-blind placebo-controlled cross-over pilot study. Restor. Neurol. Neurosci 27, 277–283. 10.3233/RNN-2009-0477
    1. Adachi N., Yoshimura A., Chiba S., Ogawa S., Kunugi H. (2018). Rotigotine, a dopamine receptor agonist, increased BDNF protein levels in the rat cortex and hippocampus. Neurosci. Lett. 662, 44–50. 10.1016/j.neulet.2017.10.006
    1. Adam R., Leff A., Sinha N., Turner C., Bays P., Draganski B., et al. . (2013). Dopamine reverses reward insensitivity in apathy following globus pallidus lesions. Cortex 49, 1292–1303. 10.1016/j.cortex.2012.04.013
    1. Adkins D. L., Jones T. A. (2005). D-Amphetamine enhances skilled reaching after ischemic cortical lesions in rats. Neurosci. Lett. 380, 214–218. 10.1016/j.neulet.2005.01.036
    1. Adkins D. L., Schallert T., Goldstein L. B. (2009). Poststroke treatment: lost in translation. Stroke 40, 8–9. 10.1161/STROKEAHA.108.534248
    1. Ahagon A., Ishikawa M., Handa H. (1980). Histochemical changes of brain dopamine in an acute stage of cerebral ischemia in gerbils. Stroke 11, 622–628. 10.1161/01.STR.11.6.622
    1. Ahmadiantehrani S., Ron D. (2013). Dopamine D2 receptor activation leads to an up-regulation of glial cell line-derived neurotrophic factor via Gbetagamma-Erk1/2-dependent induction of Zif268. J. Neurochem. 125, 193–204. 10.1111/jnc.12178
    1. Akiyama Y., Ito A., Koshimura K., Ohue T., Yamagata S., Miwa S., et al. . (1991). Effects of transient forebrain ischemia and reperfusion on function of dopaminergic neurons and dopamine reuptake in vivo in rat striatum. Brain Res. 561, 120–127. 10.1016/0006-8993(91)90756-L
    1. Alaverdashvili M., Lim D. H., Whishaw I. Q. (2007). No improvement by amphetamine on learned non-use, attempts, success or movement in skilled reaching by the rat after motor cortex stroke. Eur. J. Neurosci. 25, 3442–3452. 10.1111/j.1460-9568.2007.05594.x
    1. Amantea D., Bagetta G. (2017). Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Curr. Opin. Pharmacol. 35, 111–119. 10.1016/j.coph.2017.07.014
    1. Arai K., Jin G., Navaratna D., Lo E. H. (2009). Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 276, 4644–4652. 10.1111/j.1742-4658.2009.07176.x
    1. Arnsten A. F., Wang M., Paspalas C. D. (2015). Dopamine's actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol. Rev. 67, 681–696. 10.1124/pr.115.010512
    1. Atianjoh F. E., Ladenheim B., Krasnova I. N., Cadet J. L. (2008). Amphetamine causes dopamine depletion and cell death in the mouse olfactory bulb. Eur. J. Pharmacol. 589, 94–97. 10.1016/j.ejphar.2008.05.001
    1. Auriat A. M., Colbourne F. (2008). Influence of amphetamine on recovery after intracerebral hemorrhage in rats. Behav. Brain Res. 186, 222–229. 10.1016/j.bbr.2007.08.010
    1. Barbay S., Nudo R. J. (2009). The effects of amphetamine on recovery of function in animal models of cerebral injury: a critical appraisal. Neurorehabilitation 25, 5–17. 10.3233/NRE-2009-0495
    1. Barbay S., Zoubina E. V., Dancause N., Frost S. B., Eisner-Janowicz I., Stowe A. M., et al. . (2006). A single injection of D-amphetamine facilitates improvements in motor training following a focal cortical infarct in squirrel monkeys. Neurorehabil. Neural Repair 20, 455–458. 10.1177/1545968306290773
    1. Barbeau A., Mars H., Botez M. I., Joubert M. (1972). Levodopa combined with peripheral decarboxylase inhibition in Parkinson's disease. Can. Med. Assoc. J. 106, 1169–1174.
    1. Bath P. M., Lees K. R., Schellinger P. D., Altman H., Bland M., Hogg C., et al. . (2012). Statistical analysis of the primary outcome in acute stroke trials. Stroke 43, 1171–1178. 10.1161/STROKEAHA.111.641456
    1. Beaulieu J. M., Gainetdinov R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217. 10.1124/pr.110.002642
    1. Beaulieu J. M., Espinoza S., Gainetdinov R. R. (2015). Dopamine receptors - IUPHAR Review 13. Br. J. Pharmacol. 172, 1–23. 10.1111/bph.12906
    1. Becker C., Jick S. S., Meier C. R. (2010). Risk of stroke in patients with idiopathic Parkinson disease. Parkinsonism Relat. Disord. 16, 31–35. 10.1016/j.parkreldis.2009.06.005
    1. Belgacem Y. H., Borodinsky L. N. (2017). CREB at the crossroads of activity-dependent regulation of nervous system development and function. Adv. Exp. Med. Biol. 1015, 19–39. 10.1007/978-3-319-62817-2_2
    1. Berman S. M., Kuczenski R., McCracken J. T., London E. D. (2009). Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol. Psychiatry 14, 123–142. 10.1038/mp.2008.90
    1. Berman S., O'Neill J., Fears S., Bartzokis G., London E. D. (2008). Abuse of amphetamines and structural abnormalities in the brain. Ann. N. Y. Acad. Sci. 1141, 195–220. 10.1196/annals.1441.031
    1. Berretta A., Tzeng Y. C., Clarkson A. N. (2014). Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert Rev. Neurother. 14, 1335–1344. 10.1586/14737175.2014.969242
    1. Bhakta B. B., Hartley S., Holloway I., Couzens J. A., Ford G. A., Meads D., et al. . (2014). The DARS (Dopamine Augmented Rehabilitation in Stroke) trial: protocol for a randomised controlled trial of Co-careldopa treatment in addition to routine NHS occupational and physical therapy after stroke. Trials 15:316. 10.1186/1745-6215-15-316
    1. Björklund A., Dunnett S. B. (2007). Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202. 10.1016/j.tins.2007.03.006
    1. Borkar C. D., Bharne A. P., Nagalakshmi B., Sakharkar A. J., Subhedar N. K., Kokare D. M. (2018). Cocaine- and Amphetamine-Regulated Transcript Peptide (CART) alleviates MK-801-induced schizophrenic dementia-like symptoms. Neuroscience 375, 94–107. 10.1016/j.neuroscience.2018.01.056
    1. Borlongan C. V., Martinez R., Shytle R. D., Freeman T. B., Cahill D. W., Sanberg P. R. (1995). Striatal dopamine-mediated motor behavior is altered following occlusion of the middle cerebral artery. Pharmacol. Biochem. Behav. 52, 225–229. 10.1016/0091-3057(95)00108-9
    1. Boyar W. C., Altar C. A. (1987). Modulation of in vivo dopamine release by D2 but not D1 receptor agonists and antagonists. J. Neurochem. 48, 824–831. 10.1111/j.1471-4159.1987.tb05591.x
    1. Boyd L. A., Hayward K. S., Ward N. S., Stinear C. M., Rosso C., Fisher R. J., et al. . (2017). Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int. J. Stroke 12, 480–493. 10.1177/1747493017714176
    1. Boyeson M. G., Feeney D. M. (1990). Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol. Biochem. Behav. 35, 497–501. 10.1016/0091-3057(90)90279-Q
    1. Boyeson M. G., Feeney D. M. (1991). Adverse effects of catecholaminergic drugs following unilateral cerebellar ablations. Restor. Neurol. Neurosci. 3, 227–233.
    1. Bozzi Y., Borrelli E. (1999). Absence of the dopamine D2 receptor leads to a decreased expression of GDNF and NT-4 mRNAs in restricted brain areas. Eur. J. Neurosci. 11, 1275–1284. 10.1046/j.1460-9568.1999.00541.x
    1. Brannan T., Weinberger J., Knott P., Taff I., Kaufmann H., Togasaki D., et al. . (1987). Direct evidence of acute, massive striatal dopamine release in gerbils with unilateral strokes. Stroke 18, 108–110. 10.1161/01.STR.18.1.108
    1. Brassai A., Suvanjeiev R. G., Ban E. G., Lakatos M. (2015). Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res. Bull. 112, 1–6. 10.1016/j.brainresbull.2014.12.007
    1. Breitenstein C., Flöel A., Korsukewitz C., Wailke S., Bushuven S., Knecht S. (2006). A shift of paradigm: from noradrenergic to dopaminergic modulation of learning? J. Neurol. Sci. 248, 42–47. 10.1016/j.jns.2006.05.012
    1. Brown A. W., Bjelke B., Fuxe K. (2004). Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Exp. Neurol. 190, 102–108. 10.1016/j.expneurol.2004.07.005
    1. Brunelin J., Fecteau S., Suaud-Chagny M. F. (2013). Abnormal striatal dopamine transmission in schizophrenia. Curr. Med. Chem. 20, 397–404. 10.2174/0929867311320030011
    1. Buisson A., Callebert J., Mathieu E., Plotkine M., Boulu R. G. (1992). Striatal protection induced by lesioning the substantia nigra of rats subjected to focal ischemia. J. Neurochem. 59, 1153–1157. 10.1111/j.1471-4159.1992.tb08358.x
    1. Calabresi P., Gubellini P., Centonze D., Picconi B., Bernardi G., Chergui K., et al. . (2000). Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J. Neurosci. 20, 8443–8451. 10.1523/JNEUROSCI.20-22-08443.2000
    1. Calabresi P., Picconi B., Tozzi A., Di Filippo M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–219. 10.1016/j.tins.2007.03.001
    1. Calabresi P., Saiardi A., Pisani A., Baik J. H., Centonze D., Mercuri N. B., et al. . (1997). Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J. Neurosci. 17, 4536–4544. 10.1523/JNEUROSCI.17-12-04536.1997
    1. Caracciolo L., Marosi M., Mazzitelli J., Latifi S., Sano Y., Galvan L., et al. . (2018). CREB controls cortical circuit plasticity and functional recovery after stroke. Nat. Commun. 9:2250. 10.1038/s41467-018-04445-9
    1. Carnicella S., Ahmadiantehrani S., He D. Y., Nielsen C. K., Bartlett S. E., Janak P. H., et al. . (2009). Cabergoline decreases alcohol drinking and seeking behaviors via glial cell line-derived neurotrophic factor. Biol. Psychiatry 66, 146–153. 10.1016/j.biopsych.2008.12.022
    1. Castro-Alamancos M. A., Borrell J. (1995). Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience 68, 793–805. 10.1016/0306-4522(95)00178-L
    1. Castro-Alamancos M. A., Garcia-Segura L. M., Borrell J. (1992). Transfer of function to a specific area of the cortex after induced recovery from brain damage. Eur. J. Neurosci. 4, 853–863. 10.1111/j.1460-9568.1992.tb00195.x
    1. Cave J. W., Fujiwara N., Weibman A. R., Baker H. (2016). Cytoarchitectural changes in the olfactory bulb of Parkinson's disease patients. NPJ Parkinsons Dis. 2:16011. 10.1038/npjparkd.2016.11
    1. Centonze D., Grande C., Saulle E., Martin A. B., Gubellini P., Pavon N., et al. . (2003). Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 23, 8506–8512. 10.1523/JNEUROSCI.23-24-08506.2003
    1. Centonze D., Picconi B., Gubellini P., Bernardi G., Calabresi P. (2001). Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13, 1071–1077. 10.1046/j.0953-816x.2001.01485.x
    1. Challman T. D., Lipsky J. J. (2000). Methylphenidate: its pharmacology and uses. Mayo Clin. Proc. 75, 711–721. 10.1016/S0025-6196(11)64618-1
    1. Choi J. K., Chen Y. I., Hamel E., Jenkins B. G. (2006). Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. Neuroimage 30, 700–712. 10.1016/j.neuroimage.2005.10.029
    1. Chollet F., Cramer S. C., Stinear C., Kappelle L. J., Baron J. C., Weiller C., et al. . (2014). Pharmacological therapies in post stroke recovery: recommendations for future clinical trials. J. Neurol. 261, 1461–1468. 10.1007/s00415-013-7172-z
    1. Cook D. J., Nguyen C., Chun H. N. L., Llorente I., Chiu A. S., Machnicki M., et al. . (2017). Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J. Cereb. Blood Flow Metab. 37, 1030–1045. 10.1177/0271678X16649964
    1. Cools R., D'Esposito M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69, e113–e125. 10.1016/j.biopsych.2011.03.028
    1. Corbett D., Carmichael S. T., Murphy T. H., Jones T. A., Schwab M. E., Jolkkonen J., et al. . (2017). Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable Translational Working Group. Neurorehabil. Neural Repair 31, 699–707. 10.1177/1545968317724285
    1. Cramer S. C., Dobkin B. H., Noser E. A., Rodriguez R. W., Enney L. A. (2009). Randomized, placebo-controlled, double-blind study of ropinirole in chronic stroke. Stroke 40, 3034–3038. 10.1161/STROKEAHA.109.552075
    1. Crisostomo E. A., Duncan P. W., Propst M., Dawson D. V., Davis J. N. (1988). Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann. Neurol. 23, 94–97. 10.1002/ana.410230117
    1. Cvejić V., Micic D. V., Djuricic B. M., Mrsulja B. J., Mrsulja B. B. (1980). Monoamines and related enzymes in cerebral cortex and basal ganglia following transient ischemia in gerbils. Acta Neuropathol. 51, 71–77. 10.1007/BF00688852
    1. Dawson V. L., Hsu C. Y., Liu T. H., Dawson T. M., Wamsley J. K. (1994). Receptor alterations in subcortical structures after bilateral middle cerebral artery infarction of the cerebral cortex. Exp. Neurol. 128, 88–96. 10.1006/exnr.1994.1115
    1. Delanoy R. L., Tucci D. L., Gold P. E. (1983). Amphetamine effects on long term potentiation in dentate granule cells. Pharmacol. Biochem. Behav. 18, 137–139. 10.1016/0091-3057(83)90263-0
    1. Delbari A., Salman-Roghani R., Lokk J. (2011). Effect of methylphenidate and/or levodopa combined with physiotherapy on mood and cognition after stroke: a randomized, double-blind, placebo-controlled trial. Eur. Neurol. 66, 7–13. 10.1159/000329275
    1. Delbarre B., Delbarre G., Calinon F. (1992). Free radicals and neurotransmitters in gerbil brain. Influence of age and ischemia reperfusion insult. EXS 62, 199–212. 10.1007/978-3-0348-7460-1_20
    1. Deng X., Ladenheim B., Jayanthi S., Cadet J. L. (2007). Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb. Biol. Psychiatry 61, 1235–1243. 10.1016/j.biopsych.2006.09.010
    1. Devoto P., Flore G. (2006). On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr. Neuropharmacol. 4, 115–125. 10.2174/157015906776359559
    1. Doty R. L. (2012). Olfaction in Parkinson's disease and related disorders. Neurobiol. Dis. 46, 527–552. 10.1016/j.nbd.2011.10.026
    1. Du F., Li R., Huang Y., Li X., Le W. (2005). Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur. J. Neurosci. 22, 2422–2430. 10.1111/j.1460-9568.2005.04438.x
    1. Dudman J. T., Eaton M. E., Rajadhyaksha A., Macias W., Taher M., Barczak A., et al. . (2003). Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J. Neurochem. 87, 922–934. 10.1046/j.1471-4159.2003.02067.x
    1. Duncan P. W. (2013). Outcome measures in stroke rehabilitation. Handb. Clin. Neurol. 110, 105–111. 10.1016/B978-0-444-52901-5.00009-5
    1. Durukan A., Tatlisumak T. (2010). Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp. Transl. Stroke Med. 2, 2. 10.1186/2040-7378-2-2
    1. Engelter S. T. (2013). Safety in pharmacological enhancement of stroke rehabilitation. Eur. J. Phys. Rehabil. Med. 49, 261–267.
    1. Engelter S. T., Frank M., Lyrer P. A., Conzelmann M. (2010). Safety of pharmacological augmentation of stroke rehabilitation. Eur. Neurol. 64, 325–330. 10.1159/000322134
    1. Feeney D. M., Hovda D. A. (1983). Amphetamine and apomorphine restore tactile placing after motor cortex injury in the cat. Psychopharmacology 79, 67–71. 10.1007/BF00433018
    1. Feeney D. M., Gonzalez A., Law W. A. (1982). Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217, 855–857. 10.1126/science.7100929
    1. Feeney D. M., Weisend M. P., Kline A. E. (1993). Noradrenergic pharmacotherapy, intracerebral infusion and adrenal transplantation promote functional recovery after cortical damage. J. Neural Transplant. Plast. 4, 199–213. 10.1155/NP.1993.199
    1. Floel A., Cohen L. G. (2010). Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke. Neurobiol. Dis. 37, 243–251. 10.1016/j.nbd.2009.05.027
    1. Floel A., Hummel F., Breitenstein C., Knecht S., Cohen L. G. (2005). Dopaminergic effects on encoding of a motor memory in chronic stroke. Neurology 65, 472–474. 10.1212/01.wnl.0000172340.56307.5e
    1. Floel A., Vomhof P., Lorenzen A., Roesser N., Breitenstein C., Knecht S. (2008). Levodopa improves skilled hand functions in the elderly. Eur. J. Neurosci. 27, 1301–1307. 10.1111/j.1460-9568.2008.06079.x
    1. Floresco S. B. (2013). Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions. Front. Neurosci. 7:62. 10.3389/fnins.2013.00062
    1. Forno L. S. (1983). Reaction of the substantia nigra to massive basal ganglia infarction. Acta Neuropathol. 62, 96–102.
    1. Fumagalli F., Bedogni F., Maragnoli M. E., Gennarelli M., Perez J., Racagni G., et al. . (2003). Dopaminergic D2 receptor activation modulates FGF-2 gene expression in rat prefrontal cortex and hippocampus. J. Neurosci. Res. 74, 74–80. 10.1002/jnr.10733
    1. Fumagalli F., Pasquale L., Racagni G., Riva M. A. (2006a). Dynamic regulation of fibroblast growth factor 2 (FGF-2) gene expression in the rat brain following single and repeated cocaine administration. J. Neurochem. 96, 996–1004. 10.1111/j.1471-4159.2005.03627.x
    1. Fumagalli F., Racagni G., Riva M. A. (2006b). Shedding light into the role of BDNF in the pharmacotherapy of Parkinson's disease. Pharmacogenomics J. 6, 95–104. 10.1038/sj.tpj.6500360
    1. Gershon A. A., Vishne T., Grunhaus L. (2007). Dopamine D2-like receptors and the antidepressant response. Biol. Psychiatry 61, 145–153. 10.1016/j.biopsych.2006.05.031
    1. Gilbert D. L., Wang Z., Sallee F. R., Ridel K. R., Merhar S., Zhang J., et al. . (2006). Dopamine transporter genotype influences the physiological response to medication in ADHD. Brain 129(Pt 8), 2038–2046. 10.1093/brain/awl147
    1. Gill S. K., Leff A. P. (2012). Dopaminergic therapy in aphasia. Aphasiology 28, 155–170. 10.1080/02687038.2013.802286
    1. Gilmour G., Iversen S. D., O'Neill M. F., O'Neill M. J., Ward M. A., Bannerman D. M. (2005). Amphetamine promotes task-dependent recovery following focal cortical ischaemic lesions in the rat. Behav. Brain Res. 165, 98–109. 10.1016/j.bbr.2005.06.027
    1. Gladstone D. J., Danells C. J., Armesto A., McIlroy W. E., Staines W. R., Graham S. J., et al. . (2006). Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: a randomized, double-blind, placebo-controlled trial. Stroke 37, 179–185. 10.1161/01.STR.0000195169.42447.78
    1. Globus M. Y., Busto R., Dietrich W. D., Martinez E., Valdes I., Ginsberg M. D. (1988). Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J. Neurochem. 51, 1455–1464. 10.1111/j.1471-4159.1988.tb01111.x
    1. Globus M. Y., Ginsberg M. D., Dietrich W. D., Busto R., Scheinberg P. (1987). Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci. Lett. 80, 251–256. 10.1016/0304-3940(87)90463-0
    1. Goldstein L. B. (1995). Common drugs may influence motor recovery after stroke. The sygen in acute stroke study investigators. Neurology 45, 865–871. 10.1212/WNL.45.5.865
    1. Goldstein L. B. (1998). Potential effects of common drugs on stroke recovery. Arch. Neurol. 55, 454–456. 10.1001/archneur.55.4.454
    1. Goldstein L. B. (2009). Amphetamine trials and tribulations. Stroke 40, S133–135. 10.1161/STROKEAHA.108.533703
    1. Goldstein L. B., Davis J. N. (1990a). Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury. J. Neurosci. Methods 31, 101–107. 10.1016/0165-0270(90)90154-8
    1. Goldstein L. B., Davis J. N. (1990b). Influence of lesion size and location on amphetamine-facilitated recovery of beam-walking in rats. Behav. Neurosci. 104, 320–327. 10.1037/0735-7044.104.2.320
    1. Goldstein L. B., Davis J. N. (1990c). Post-lesion practice and amphetamine-facilitated recovery of beam-walking in the rat. Restor. Neurol. Neurosci. 1, 311–314.
    1. Grade C., Redford B., Chrostowski J., Toussaint L., Blackwell B. (1998). Methylphenidate in early poststroke recovery: a double-blind, placebo-controlled study. Arch. Phys. Med. Rehabil. 79, 1047–1050. 10.1016/S0003-9993(98)90169-1
    1. Grattan D. R. (2015). 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-prolactin axis. J. Endocrinol. 226, T101–122. 10.1530/JOE-15-0213
    1. Gurden H., Takita M., Jay T. M. (2000). Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J. Neurosci. 20:RC106 10.1523/JNEUROSCI.20-22-j0003.2000
    1. Gurden H., Tassin J. P., Jay T. M. (1999). Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 94, 1019–1027. 10.1016/S0306-4522(99)00395-4
    1. Hallett M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Res. Brain Res. Rev. 36, 169–174. 10.1016/S0165-0173(01)00092-3
    1. Hama S., Murakami T., Yamashita H., Onoda K., Yamawaki S., Kurisu K. (2017). Neuroanatomic pathways associated with monoaminergic dysregulation after stroke. Int. J. Geriatr. Psychiatry 32, 633–642. 10.1002/gps.4503
    1. Handley A., Medcalf P., Hellier K., Dutta D. (2009). Movement disorders after stroke. Age Ageing 38, 260–266. 10.1093/ageing/afp020
    1. Harrison M. J., Marsden C. D., Jenner P. (1979). Effect of experimental ischemia on neurotransmitter amines in the gerbil brain. Stroke 10, 165–168. 10.1161/01.STR.10.2.165
    1. Hasbi A., Fan T., Alijaniaram M., Nguyen T., Perreault M. L., O'Dowd B. F., et al. . (2009). Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc. Natl. Acad. Sci. U.S.A. 106, 21377–21382. 10.1073/pnas.0903676106
    1. Hashimoto N., Matsumoto T., Mabe H., Hashitani T., Nishino H. (1994). Dopamine has inhibitory and accelerating effects on ischemia-induced neuronal cell damage in the rat striatum. Brain Res. Bull. 33, 281–288. 10.1016/0361-9230(94)90195-3
    1. He X., Wang D., Zhang X., Li A., Gu X., Ding F., et al. . (2008). Prolonged modulation of FGF-2 expression in astrocytic cultures induced by O,O'-diacetyl-apomorphine. Biochem. Biophys. Res. Commun. 369, 824–829. 10.1016/j.bbrc.2008.02.082
    1. Her Y., Yoo K. Y., Hwang I. K., Lee J. S., Kang T. C., Lee B. H., et al. . (2007). N-methyl-D-aspartate receptor type 1 immunoreactivity and protein level in the gerbil main olfactory bulb after transient forebrain ischemia. Neurochem. Res. 32, 125–131. 10.1007/s11064-006-9237-1
    1. Hosp J. A., Pekanovic A., Rioult-Pedotti M. S., Luft A. R. (2011). Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J. Neurosci. 31, 2481–2487. 10.1523/JNEUROSCI.5411-10.2011
    1. Hotte M., Naudon L., Jay T. M. (2005). Modulation of recognition and temporal order memory retrieval by dopamine D1 receptor in rats. Neurobiol. Learn. Mem. 84, 85–92. 10.1016/j.nlm.2005.04.002
    1. Hotte M., Thuault S., Lachaise F., Dineley K. T., Hemmings H. C., Nairn A. C., et al. . (2006). D1 receptor modulation of memory retrieval performance is associated with changes in pCREB and pDARPP-32 in rat prefrontal cortex. Behav. Brain Res. 171, 127–133. 10.1016/j.bbr.2006.03.026
    1. Hovda D. A., Feeney D. M. (1984). Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat. Brain Res. 298, 358–361. 10.1016/0006-8993(84)91437-9
    1. Hovda D. A., Sutton R. L., Feeney D. M. (1987). Recovery of tactile placing after visual cortex ablation in cat: a behavioral and metabolic study of diaschisis. Exp. Neurol. 97, 391–402. 10.1016/0014-4886(87)90099-9
    1. Hu Z., Oh E. H., Chung Y. B., Hong J. T., Oh K. W. (2015). Predominant D1 receptors involvement in the over-expression of CART peptides after repeated cocaine administration. Korean J. Physiol. Pharmacol. 19, 89–97. 10.4196/kjpp.2015.19.2.89
    1. Huang C. C. Y., Ma T., Roltsch Hellard E. A., Wang X., Selvamani A., Lu J., et al. . (2017). Stroke triggers nigrostriatal plasticity and increases alcohol consumption in rats. Sci. Rep. 7:2501. 10.1038/s41598-017-02714-z
    1. Huang Y. Y., Simpson E., Kellendonk C., Kandel E. R. (2004). Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc. Natl. Acad. Sci. U.S.A. 101, 3236–3241. 10.1073/pnas.0308280101
    1. Hubert G. W., Jones D. C., Moffett M. C., Rogge G., Kuhar M. J. (2008). CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem. Pharmacol. 75, 57–62. 10.1016/j.bcp.2007.07.028
    1. Huck J. H., Freyer D., Bottcher C., Mladinov M., Muselmann-Genschow C., Thielke M., et al. . (2015). De novo expression of dopamine D2 receptors on microglia after stroke. J. Cereb. Blood Flow Metab. 35, 1804–1811. 10.1038/jcbfm.2015.128
    1. Hyman S. E., Cole R. L., Konradi C., Kosofsky B. E. (1995). Dopamine regulation of transcription factor-target interactions in rat striatum. Chem. Senses 20, 257–260.
    1. Ishihara N., Welch K. M., Meyer J. S., Chabi E., Naritomi H., Wang T. P., et al. . (1979). Influence of cerebral embolism on brain monoamines. J. Neurol. Neurosurg. Psychiatr. 42, 847–853. 10.1136/jnnp.42.9.847
    1. Issa R., AlQteishat A., Mitsios N., Saka M., Krupinski J., Tarkowski E., et al. . (2005). Expression of basic fibroblast growth factor mRNA and protein in the human brain following ischaemic stroke. Angiogenesis 8, 53–62. 10.1007/s10456-005-5613-8
    1. Iwakura Y., Nawa H., Sora I., Chao M. V. (2008). Dopamine D1 receptor-induced signaling through TrkB receptors in striatal neurons. J. Biol. Chem. 283, 15799–15806. 10.1074/jbc.M801553200
    1. Jaffe S. L. (2002). Failed attempts at intranasal abuse of Concerta. J. Am. Acad. Child Adolesc. Psychiatry 41:5. 10.1097/00004583-200201000-00003
    1. Jang S. H. (2013). Motor function-related maladaptive plasticity in stroke: a review. Neurorehabilitation 32, 311–316. 10.3233/NRE-130849
    1. Jia J., Chen X., Zhu W., Luo Y., Hua Z., Xu Y. (2008). CART protects brain from damage through ERK activation in ischemic stroke. Neuropeptides 42, 653–661. 10.1016/j.npep.2008.05.006
    1. Kakuda W., Abo M., Kobayashi K., Momosaki R., Yokoi A., Fukuda A., et al. . (2011). Combination treatment of low-frequency rTMS and occupational therapy with levodopa administration: an intensive neurorehabilitative approach for upper limb hemiparesis after stroke. Int. J. Neurosci. 121, 373–378. 10.3109/00207454.2011.560314
    1. Kawano T., Tsutsumi K., Miyake H., Mori K. (1988). Striatal dopamine in acute cerebral ischemia of stroke-resistant rats. Stroke 19, 1540–1543. 10.1161/01.STR.19.12.1540
    1. Kempadoo K. A., Mosharov E. V., Choi S. J., Sulzer D., Kandel E. R. (2016). Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl. Acad. Sci. U.S.A. 113, 14835–14840. 10.1073/pnas.1616515114
    1. Kesar T. M., Belagaje S. R., Pergami P., Haut M. W., Hobbs G., Buetefisch C. M. (2017). Effects of monoaminergic drugs on training-induced motor cortex plasticity in older adults. Brain Res. 1670, 106–117. 10.1016/j.brainres.2017.06.015
    1. Kim B. R., Kim H. Y., Chun Y. I., Yun Y. M., Kim H., Choi D. H., et al. . (2016). Association between genetic variation in the dopamine system and motor recovery after stroke. Restor. Neurol. Neurosci. 34, 925–934. 10.3233/RNN-160667
    1. Kinoshita T., Moritani T., Shrier D. A., Wang H. Z., Hiwatashi A., Numaguchi Y., et al. . (2002). Secondary degeneration of the substantia nigra and corticospinal tract after hemorrhagic middle cerebral artery infarction: diffusion-weighted MR findings. Magn. Reson. Med. Sci. 1, 175–178. 10.2463/mrms.1.175
    1. Kobayashi T., Ahlenius H., Thored P., Kobayashi R., Kokaia Z., Lindvall O. (2006). Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 37, 2361–2367. 10.1161/01.STR.0000236025.44089.e1
    1. Kogure K., Scheinberg P., Matsumoto A., Busto R., Reinmuth O. M. (1975). Catecholamines in experimental brain ischemia. Arch. Neurol. 32, 21–24. 10.1001/archneur.1975.00490430043005
    1. Koh U. S., Hwang I. K., Lee J. C., Lee H. Y., Seong N. S., Chung H. G., et al. . (2004). Histochemical study on neurodegeneration in the olfactory bulb after transient forebrain ischaemia in the Mongolian gerbil. Anat. Histol. Embryol. 33, 208–211. 10.1111/j.1439-0264.2004.00538.x
    1. Kohno N., Abe S., Toyoda G., Oguro H., Bokura H., Yamaguchi S. (2010). Successful treatment of post-stroke apathy by the dopamine receptor agonist ropinirole. J. Clin. Neurosci. 17, 804–806. 10.1016/j.jocn.2009.09.043
    1. Korczyn A. D. (2015). Vascular parkinsonism–characteristics, pathogenesis and treatment. Nat. Rev. Neurol. 11, 319–326. 10.1038/nrneurol.2015.61
    1. Kratz O., Diruf M. S., Studer P., Gierow W., Buchmann J., Moll G. H., et al. . (2009). Effects of methylphenidate on motor system excitability in a response inhibition task. Behav. Brain Funct. 5, 12. 10.1186/1744-9081-5-12
    1. Krimer L. S., Muly E. C., III., Williams G. V., Goldman-Rakic P. S. (1998). Dopaminergic regulation of cerebral cortical microcirculation. Nat. Neurosci. 1, 286–289. 10.1038/1099
    1. Kronenberg G., Balkaya M., Prinz V., Gertz K., Ji S., Kirste I., et al. . (2012). Exofocal dopaminergic degeneration as antidepressant target in mouse model of poststroke depression. Biol. Psychiatry 72, 273–281. 10.1016/j.biopsych.2012.02.026
    1. Kubrusly R. C., Ventura A. L., de Melo Reis R. A., Serra G. C., Yamasaki E. N., Gardino P. F., et al. . (2007). Norepinephrine acts as D1-dopaminergic agonist in the embryonic avian retina: late expression of beta1-adrenergic receptor shifts norepinephrine specificity in the adult tissue. Neurochem. Int. 50, 211–218. 10.1016/j.neuint.2006.08.004
    1. Kuczenski R., Segal D. S. (1997). Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 68, 2032–2037. 10.1046/j.1471-4159.1997.68052032.x
    1. Küppers E., Beyer C. (2001). Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 12, 1175–1179. 10.1097/00001756-200105080-00025
    1. Kuric E., Ruscher K. (2014a). Dynamics of major histocompatibility complex class II-positive cells in the postischemic brain–influence of levodopa treatment. J. Neuroinflammation 11, 145. 10.1186/s12974-014-0145-z
    1. Kuric E., Ruscher K. (2014b). Reduction of rat brain CD8+ T-cells by levodopa/benserazide treatment after experimental stroke. Eur. J. Neurosci. 40, 2463–2470. 10.1111/ejn.12598
    1. Kuric E., Ruscher K. (2014c). Reversal of stroke induced lymphocytopenia by levodopa/benserazide treatment. J. Neuroimmunol. 269, 94–97. 10.1016/j.jneuroim.2014.02.009
    1. Kuric E., Wieloch T., Ruscher K. (2013). Dopamine receptor activation increases glial cell line-derived neurotrophic factor in experimental stroke. Exp. Neurol. 247, 202–208. 10.1016/j.expneurol.2013.04.016
    1. Kurozumi K., Nakamura K., Tamiya T., Kawano Y., Kobune M., Hirai S., et al. . (2004). BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol. Ther. 9, 189–197. 10.1016/j.ymthe.2003.10.012
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754. 10.1016/S1474-4422(09)70150-4
    1. Lemon N., Manahan-Vaughan D. (2006). Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J. Neurosci. 26, 7723–7729. 10.1523/JNEUROSCI.1454-06.2006
    1. Li A., Guo H., Luo X., Sheng J., Yang S., Yin Y., et al. . (2006). Apomorphine-induced activation of dopamine receptors modulates FGF-2 expression in astrocytic cultures and promotes survival of dopaminergic neurons. FASEB J. 20, 1263–1265. 10.1096/fj.05-5510fje
    1. Liepert J., Heller A., Behnisch G., Schoenfeld A. (2013). Catechol-O-methyltransferase polymorphism influences outcome after ischemic stroke: a prospective double-blind study. Neurorehabil. Neural Repair 27, 491–496. 10.1177/1545968313481282
    1. Lin D. A., Finklestein S. P. (1997). REVIEW: basic fibroblast growth factor: a Treatment for stroke? Neuroscientist 3, 247–250. 10.1177/107385849700300412
    1. Liu H. S., Shen H., Harvey B. K., Castillo P., Lu H., Yang Y., et al. . (2011). Post-treatment with amphetamine enhances reinnervation of the ipsilateral side cortex in stroke rats. Neuroimage 56, 280–289. 10.1016/j.neuroimage.2011.02.049
    1. Liu H. S., Shen H., Luo Y., Hoffer B. J., Wang Y., Yang Y. (2016). Post-treatment with cocaine- and amphetamine-regulated transcript enhances infarct resolution, reinnervation, and angiogenesis in stroke rats - an MRI study. NMR Biomed. 29, 361–370. 10.1002/nbm.3461
    1. Liu J., Wang Y., Akamatsu Y., Lee C. C., Stetler R. A., Lawton M. T., et al. . (2014). Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog. Neurobiol. 115, 138–156. 10.1016/j.pneurobio.2013.11.004
    1. Livingston-Thomas J., Nelson P., Karthikeyan S., Antonescu S., Jeffers M. S., Marzolini S., et al. . (2016). Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics 13, 395–402. 10.1007/s13311-016-0423-9
    1. Lokk J., Salman Roghani R., Delbari A. (2011). Effect of methylphenidate and/or levodopa coupled with physiotherapy on functional and motor recovery after stroke–a randomized, double-blind, placebo-controlled trial. Acta Neurol. Scand. 123, 266–273. 10.1111/j.1600-0404.2010.01395.x
    1. Long D., Young J. (2003). Dexamphetamine treatment in stroke. QJM 96, 673–685. 10.1093/qjmed/hcg113
    1. Loureiro-Vieira S., Costa V. M., Duarte J. A., Duarte-Araujo M., Goncalves-Monteiro S., Maria de Lourdes B., et al. . (2018). Methylphenidate clinically oral doses improved brain and heart glutathione redox status and evoked renal and cardiac tissue injury in rats. Biomed. Pharmacother. 100, 551–563. 10.1016/j.biopha.2018.02.017
    1. Luft A. R., Buitrago M. M., Ringer T., Dichgans J., Schulz J. B. (2004). Motor skill learning depends on protein synthesis in motor cortex after training. J. Neurosci. 24, 6515–6520. 10.1523/JNEUROSCI.1034-04.2004
    1. Luo Y., Shen H., Liu H. S., Yu S. J., Reiner D. J., Harvey B. K., et al. . (2013). CART peptide induces neuroregeneration in stroke rats. J. Cereb. Blood Flow Metab. 33, 300–310. 10.1038/jcbfm.2012.172
    1. MacDonald H. J., Stinear C. M., Ren A., Coxon J. P., Kao J., Macdonald L., et al. . (2016). Dopamine gene profiling to predict impulse control and effects of dopamine agonist ropinirole. J. Cogn. Neurosci. 28, 909–919. 10.1162/jocn_a_00946
    1. Maling H. M., Acheson G. H. (1946). Righting and other postural activity in low-decerebrate and in spinal cats after d-amphetamine. J. Neurophysiol. 9, 379–386. 10.1152/jn.1946.9.5.379
    1. Maloney E. M., Djamshidian A., O'Sullivan S. S. (2017). Phenomenology and epidemiology of impulsive-compulsive behaviours in Parkinson's disease, atypical Parkinsonian disorders and non-Parkinsonian populations. J. Neurol. Sci. 374, 47–52. 10.1016/j.jns.2016.12.058
    1. Mang C. S., Campbell K. L., Ross C. J., Boyd L. A. (2013). Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys. Ther. 93, 1707–1716. 10.2522/ptj.20130053
    1. Martín A., Gomez-Vallejo V., San Sebastian E., Padro D., Markuerkiaga I., Llarena I., et al. . (2013). In vivo imaging of dopaminergic neurotransmission after transient focal ischemia in rats. J. Cereb. Blood Flow Metab. 33, 244–252. 10.1038/jcbfm.2012.162
    1. Martinsson L., Wahlgren N. G. (2003). Safety of dexamphetamine in acute ischemic stroke: a randomized, double-blind, controlled dose-escalation trial. Stroke 34, 475–481. 10.1161/
    1. Martinsson L., Hardemark H., Eksborg S. (2007). Amphetamines for improving recovery after stroke. Cochrane Database Syst. Rev. CD002090. 10.1002/14651858.CD002090.pub2
    1. Masihuzzaman A. M., Uddin M. J., Majumder S., Barman K. K., Ullah M. A. (2011). Effect of low dose levodopa on motor outcome of different types of stroke. Mymensingh Med. J. 20, 689–693.
    1. Mattay V. S., Goldberg T. E., Fera F., Hariri A. R., Tessitore A., Egan M. F., et al. . (2003). Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc. Natl. Acad. Sci. U.S.A. 100, 6186–6191. 10.1073/pnas.0931309100
    1. Mazagri R., Shuaib A., McPherson M., Deighton M. (1995). Amphetamine failed to improve motor function in acute stroke [abstract]. Can. J. Neurol. Sci. 22:S25.
    1. McEntee W. J., Mair R. G., Langlais P. J. (1987). Neurochemical specificity of learning: dopamine and motor learning. Yale J. Biol. Med. 60, 187–193.
    1. Meintzschel F., Ziemann U. (2006). Modification of practice-dependent plasticity in human motor cortex by neuromodulators. Cereb. Cortex 16, 1106–1115. 10.1093/cercor/bhj052
    1. Mestre T. A., Strafella A. P., Thomsen T., Voon V., Miyasaki J. (2013). Diagnosis and treatment of impulse control disorders in patients with movement disorders. Ther. Adv. Neurol. Disord. 6, 175–188. 10.1177/1756285613476127
    1. Mintz M., Tomer R. (1986). Exposure to amphetamine after substantia nigra lesion interferes with the process of behavioral recovery. Pharmacol. Biochem. Behav. 25, 1307–1311. 10.1016/0091-3057(86)90127-9
    1. Molina-Luna K., Pekanovic A., Rohrich S., Hertler B., Schubring-Giese M., Rioult-Pedotti M. S., et al. . (2009). Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS ONE 4:e7082. 10.1371/journal.pone.0007082
    1. Moo L., Wityk R. J. (1999). Olfactory and taste dysfunction after bilateral middle cerebral artery stroke. J. Stroke Cerebrovasc. Dis. 8, 353–354. 10.1016/S1052-3057(99)80011-1
    1. Morton W. A., Stockton G. G. (2000). Methylphenidate Abuse and Psychiatric Side Effects. Prim. Care Companion J. Clin. Psychiatry 2, 159–164. 10.4088/PCC.v02n0502
    1. Mu Q., Johnson K., Morgan P. S., Grenesko E. L., Molnar C. E., Anderson B., et al. . (2007). A single 20 mg dose of the full D1 dopamine agonist dihydrexidine (DAR-0100) increases prefrontal perfusion in schizophrenia. Schizophr. Res. 94, 332–341. 10.1016/j.schres.2007.03.033
    1. Mueller D., Chapman C. A., Stewart J. (2006). Amphetamine induces dendritic growth in ventral tegmental area dopaminergic neurons in vivo via basic fibroblast growth factor. Neuroscience 137, 727–735. 10.1016/j.neuroscience.2005.09.038
    1. Nakane M., Teraoka A., Asato R., Tamura A. (1992). Degeneration of the ipsilateral substantia nigra following cerebral infarction in the striatum. Stroke 23, 328–332. 10.1161/01.STR.23.3.328
    1. Nitsche M. A., Kuo M. F., Grosch J., Bergner C., Monte-Silva K., Paulus W. (2009). D1-receptor impact on neuroplasticity in humans. J. Neurosci. 29, 2648–2653. 10.1523/JNEUROSCI.5366-08.2009
    1. Nitsche M. A., Lampe C., Antal A., Liebetanz D., Lang N., Tergau F., et al. . (2006). Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur. J. Neurosci. 23, 1651–1657. 10.1111/j.1460-9568.2006.04676.x
    1. Nutt J. G., Fellman J. H. (1984). Pharmacokinetics of levodopa. Clin. Neuropharmacol. 7, 35–49. 10.1097/00002826-198403000-00002
    1. Obi K., Amano I., Takatsuru Y. (2018). Role of dopamine on functional recovery in the contralateral hemisphere after focal stroke in the somatosensory cortex. Brain Res. 1678, 146–152. 10.1016/j.brainres.2017.10.022
    1. Oczkowski W. (2013). Pharmacological therapies to enhance motor recovery and walking after stroke: emerging strategies. Expert Rev. Neurother. 13, 903–909. 10.1586/14737175.2013.814940
    1. Ogawa T., Okudera T., Inugami A., Noguchi K., Kado H., Yoshida Y., et al. . (1997). Degeneration of the ipsilateral substantia nigra after striatal infarction: evaluation with MR imaging. Radiology 204, 847–851. 10.1148/radiology.204.3.9280270
    1. Ohara S., Kondo K., Kagoshima M., Yanagisawa N. (1989). [Secondary degeneration of substantia nigra following massive basal ganglia infarction]. Rinsho Shinkeigaku 29, 1352–1356.
    1. Ohlin K. E., Sebastianutto I., Adkins C. E., Lundblad C., Lockman P. R., Cenci M. A. (2012). Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson's disease. Neuroimage 61, 228–239. 10.1016/j.neuroimage.2012.02.066
    1. Ohta K., Fujinami A., Kuno S., Sakakimoto A., Matsui H., Kawahara Y., et al. . (2004). Cabergoline stimulates synthesis and secretion of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor by mouse astrocytes in primary culture. Pharmacology 71, 162–168. 10.1159/000077451
    1. Ohta K., Kuno S., Inoue S., Ikeda E., Fujinami A., Ohta M. (2010). The effect of dopamine agonists: the expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J. Neurol. Sci. 291, 12–16. 10.1016/j.jns.2010.01.013
    1. Ohwatashi A., Ikeda S., Harada K., Kamikawa Y., Yoshida A. (2013). Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat. EXCLI J. 12, 693–700.
    1. Okada Y., Sakai H., Kohiki E., Suga E., Yanagisawa Y., Tanaka K., et al. . (2005). A dopamine D4 receptor antagonist attenuates ischemia-induced neuronal cell damage via upregulation of neuronal apoptosis inhibitory protein. J. Cereb. Blood Flow Metab. 25, 794–806. 10.1038/sj.jcbfm.9600078
    1. Otmakhova N. A., Lisman J. E. (1996). D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 16, 7478–7486. 10.1523/JNEUROSCI.16-23-07478.1996
    1. Paciaroni M., Bogousslavsky J. (2011). Trafermin for stroke recovery: is it time for another randomized clinical trial? Expert Opin. Biol. Ther. 11, 1533–1541. 10.1517/14712598.2011.616888
    1. Papadopoulos C. M., Tsai S. Y., Guillen V., Ortega J., Kartje G. L., Wolf W. A. (2009). Motor recovery and axonal plasticity with short-term amphetamine after stroke. Stroke 40, 294–302. 10.1161/STROKEAHA.108.519769
    1. Pauly V., Frauger E., Lepelley M., Mallaret M., Boucherie Q., Micallef J. (2018). Patterns and profiles of methylphenidate use both in children and adults. Br. J. Clin. Pharmacol. 84, 1215–1227. 10.1111/bcp.13544
    1. Pearson-Fuhrhop K. M., Minton B., Acevedo D., Shahbaba B., Cramer S. C. (2013). Genetic variation in the human brain dopamine system influences motor learning and its modulation by L-Dopa. PLoS ONE 8:e61197. 10.1371/journal.pone.0061197
    1. Pei Y., Asif-Malik A., Canales J. J. (2016). Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry, and clinical implications. Front. Neurosci. 10:148. 10.3389/fnins.2016.00148
    1. Perreault M. L., Fan T., Alijaniaram M., O'Dowd B. F., George S. R. (2012). Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2. PLoS ONE 7:e33348. 10.1371/journal.pone.0033348
    1. Platz T., Kim I. H., Engel U., Pinkowski C., Eickhof C., Kutzner M. (2005). Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: interim analysis and termination of a double blind, randomised, placebo-controlled trial. Restor. Neurol. Neurosci. 23, 271–280.
    1. Ploughman M., Windle V., MacLellan C. L., White N., Dore J. J., Corbett D. (2009). Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40, 1490–1495. 10.1161/STROKEAHA.108.531806
    1. Politi C., Ciccacci C., Novelli G., Borgiani P. (2018). Genetics and treatment response in Parkinson's disease: an update on pharmacogenetic studies. Neuromolecular Med. 20, 1–17. 10.1007/s12017-017-8473-7
    1. Prinz V., Hetzer A. M., Muller S., Balkaya M., Leithner C., Kronenberg G., et al. . (2015). MRI heralds secondary nigral lesion after brain ischemia in mice: a secondary time window for neuroprotection. J. Cereb. Blood Flow Metab. 35, 1903–1909. 10.1038/jcbfm.2015.153
    1. Qiu J., Yan Z., Tao K., Li Y., Li Y., Li J., et al. . (2016). Sinomenine activates astrocytic dopamine D2 receptors and alleviates neuroinflammatory injury via the CRYAB/STAT3 pathway after ischemic stroke in mice. J. Neuroinflammation 13:263. 10.1186/s12974-016-0739-8
    1. Queen S. A., Chen M. J., Feeney D. M. (1997). d-Amphetamine attenuates decreased cerebral glucose utilization after unilateral sensorimotor cortex contusion in rats. Brain Res. 777, 42–50. 10.1016/S0006-8993(97)00717-8
    1. Ramic M., Emerick A. J., Bollnow M. R., O'Brien T. E., Tsai S. Y., Kartje G. L. (2006). Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat. Brain Res. 1111, 176–186. 10.1016/j.brainres.2006.06.063
    1. Rasmussen R. S., Overgaard K., Hildebrandt-Eriksen E. S., Boysen G. (2006). D-amphetamine improves cognitive deficits and physical therapy promotes fine motor rehabilitation in a rat embolic stroke model. Acta Neurol. Scand. 113, 189–198. 10.1111/j.1600-0404.2005.00547.x
    1. Rasmussen R. S., Overgaard K., Kristiansen U., Johansen F. F. (2011). Acute but not delayed amphetamine treatment improves behavioral outcome in a rat embolic stroke model. Neurol. Res. 33, 774–782. 10.1179/1743132811Y.0000000009
    1. Reding M. J., Borucki S. (1995). Effect of Dextroamphetamine on motor recovery after stroke [abstract]. Neurology 45(Suppl. 4):A222.
    1. Restemeyer C., Weiller C., Liepert J. (2007). No effect of a levodopa single dose on motor performance and motor excitability in chronic stroke. A double-blind placebo-controlled cross-over pilot study. Restor. Neurol. Neurosci. 25, 143–150.
    1. Reuss B., Leung D. S., Ohlemeyer C., Kettenmann H., Unsicker K. (2000). Regionally distinct regulation of astroglial neurotransmitter receptors by fibroblast growth factor-2. Mol. Cell. Neurosci. 16, 42–58. 10.1006/mcne.2000.0857
    1. Ricaurte G. A., Mechan A. O., Yuan J., Hatzidimitriou G., Xie T., Mayne A. H., et al. . (2005). Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates. J. Pharmacol. Exp. Ther. 315, 91–98. 10.1124/jpet.105.087916
    1. Richards D. A., Obrenovitch T. P., Symon L., Curzon G. (1993). Extracellular dopamine and serotonin in the rat striatum during transient ischaemia of different severities: a microdialysis study. J. Neurochem. 60, 128–136. 10.1111/j.1471-4159.1993.tb05830.x
    1. Rioult-Pedotti M. S., Pekanovic A., Atiemo C. O., Marshall J., Luft A. R. (2015). Dopamine promotes motor cortex plasticity and motor skill learning via PLC activation. PLoS ONE 10:e0124986. 10.1371/journal.pone.0124986
    1. Roceri M., Molteni R., Fumagalli F., Racagni G., Gennarelli M., Corsini G., et al. . (2001). Stimulatory role of dopamine on fibroblast growth factor-2 expression in rat striatum. J. Neurochem. 76, 990–997. 10.1046/j.1471-4159.2001.00088.x
    1. Rodriguez-Grande B., Blackabey V., Gittens B., Pinteaux E., Denes A. (2013). Loss of substance P and inflammation precede delayed neurodegeneration in the substantia nigra after cerebral ischemia. Brain Behav. Immun. 29, 51–61. 10.1016/j.bbi.2012.11.017
    1. Rogge G., Jones D., Hubert G. W., Lin Y., Kuhar M. J. (2008). CART peptides: regulators of body weight, reward and other functions. Nat. Rev. Neurosci. 9, 747–758. 10.1038/nrn2493
    1. Rogozinska K., Skangiel-Kramska J. (2010). Effect of focal cerebral ischaemia on modulatory neurotransmitter receptors in the rat brain: an autoradiographic study. J. Chem. Neuroanat. 40, 232–238. 10.1016/j.jchemneu.2010.06.004
    1. Root D. H., Hoffman A. F., Good C. H., Zhang S., Gigante E., Lupica C. R., et al. . (2015). Norepinephrine activates dopamine D4 receptors in the rat lateral habenula. J. Neurosci. 35, 3460–3469. 10.1523/JNEUROSCI.4525-13.2015
    1. Rösser N., Flöel A. (2008). Pharmacological enhancement of motor recovery in subacute and chronic stroke. Neurorehabilitation 23, 95–103.
    1. Rösser N., Heuschmann P., Wersching H., Breitenstein C., Knecht S., Flöel A. (2008). Levodopa improves procedural motor learning in chronic stroke patients. Arch. Phys. Med. Rehabil. 89, 1633–1641. 10.1016/j.apmr.2008.02.030
    1. Rousseaux M., Muller P., Gahide I., Mottin Y., Romon M. (1996). Disorders of smell, taste, and food intake in a patient with a dorsomedial thalamic infarct. Stroke 27, 2328–2330. 10.1161/01.STR.27.12.2328
    1. Ruan H., Saur T., Yao W. D. (2014). Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry. Front. Neural Circuits 8:38. 10.3389/fncir.2014.00038
    1. Ruppert E., Bataillard M., Namer I. J., Tatu L., Hacquard A., Hugueny L., et al. . (2017). Hyperdopaminergism in lenticulostriate stroke-related restless legs syndrome: an imaging study. Sleep Med. 30, 136–138. 10.1016/j.sleep.2016.02.011
    1. Ruscher K., Kuric E., Wieloch T. (2012). Levodopa treatment improves functional recovery after experimental stroke. Stroke 43, 507–513. 10.1161/STROKEAHA.111.638767
    1. Schäbitz W. R., Steigleder T., Cooper-Kuhn C. M., Schwab S., Sommer C., Schneider A., et al. . (2007). Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 38, 2165–2172. 10.1161/STROKEAHA.106.477331
    1. Scheidtmann K., Fries W., Muller F., Koenig E. (2001). Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 358, 787–790. 10.1016/S0140-6736(01)05966-9
    1. Schmanke T. D., Avery R. A., Barth T. M. (1996). The effects of amphetamine on recovery of function after cortical damage in the rat depend on the behavioral requirements of the task. J. Neurotrauma 13, 293–307.
    1. Schmanke T., Barth T. M. (1997). Amphetamine and task-specific practice augment recovery of vibrissae-evoked forelimb placing after unilateral sensorimotor cortical injury in the rat. J. Neurotrauma 14, 459–468. 10.1089/neu.1997.14.459
    1. Schönfeld L. M., Dooley D., Jahanshahi A., Temel Y., Hendrix S. (2017). Evaluating rodent motor functions: which tests to choose? Neurosci. Biobehav. Rev. 83, 298–312. 10.1016/j.neubiorev.2017.10.021
    1. Schuster C., Maunz G., Lutz K., Kischka U., Sturzenegger R., Ettlin T. (2011). Dexamphetamine improves upper extremity outcome during rehabilitation after stroke: a pilot randomized controlled trial. Neurorehabil. Neural Repair 25, 749–755. 10.1177/1545968311405674
    1. Shen W., Flajolet M., Greengard P., Surmeier D. J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851. 10.1126/science.1160575
    1. Sieber M. W., Guenther M., Jaenisch N., Albrecht-Eckardt D., Kohl M., Witte O. W., et al. . (2014). Age-specific transcriptional response to stroke. Neurobiol. Aging 35, 1744–1754. 10.1016/j.neurobiolaging.2014.01.012
    1. Siniscalchi A., Gallelli L., Labate A., Malferrari G., Palleria C., Sarro G. D. (2012). Post-stroke movement disorders: clinical manifestations and pharmacological management. Curr. Neuropharmacol. 10, 254–262. 10.2174/157015912803217341
    1. Slevin M., Kumar P., Gaffney J., Kumar S., Krupinski J. (2006). Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin. Sci. 111, 171–183. 10.1042/CS20060049
    1. Slivka A., Brannan T. S., Weinberger J., Knott P. J., Cohen G. (1988). Increase in extracellular dopamine in the striatum during cerebral ischemia: a study utilizing cerebral microdialysis. J. Neurochem. 50, 1714–1718. 10.1111/j.1471-4159.1988.tb02468.x
    1. Smith C. C., Greene R. W. (2012). CNS dopamine transmission mediated by noradrenergic innervation. J. Neurosci. 32, 6072–6080. 10.1523/JNEUROSCI.6486-11.2012
    1. Sonde L., Lökk J. (2007). Effects of amphetamine and/or L-dopa and physiotherapy after stroke - a blinded randomized study. Acta Neurol. Scand. 115, 55–59. 10.1111/j.1600-0404.2006.00728.x
    1. Sonde L., Nordstrom M., Nilsson C. G., Lökk J., Viitanen M. (2001). A double-blind placebo-controlled study of the effects of amphetamine and physiotherapy after stroke. Cerebrovasc. Dis. 12, 253–257. 10.1159/000047712
    1. Soriano M. A., Justicia C., Ferrer I., Rodriguez-Farre E., Planas A. M. (1997). Striatal infarction in the rat causes a transient reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra. Neurobiol. Dis. 4, 376–385. 10.1006/nbdi.1997.0166
    1. Spiegel D. R., Chatterjee A. (2014). A case of abulia, status/post right middle cerebral artery territory infarct, treated successfully with olanzapine. Clin. Neuropharmacol. 37, 186–189. 10.1097/WNF.0000000000000053
    1. Sprigg N., Bath P. M. (2009). Speeding stroke recovery? A systematic review of amphetamine after stroke. J. Neurol. Sci. 285, 3–9. 10.1016/j.jns.2009.04.040
    1. Stanfill A., Elijovich L., Baughman B., Conley Y. (2016). A review and conceptual model of dopaminergic contributions to poststroke depression. J. Neurosci. Nurs. 48, 242–246. 10.1097/JNN.0000000000000240
    1. Stein M. A., Waldman I. D., Sarampote C. S., Seymour K. E., Robb A. S., Conlon C., et al. . (2005). Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 30, 1374–1382. 10.1038/sj.npp.1300718
    1. Stewart J. C., Cramer S. C. (2017). Genetic variation and neuroplasticity: role in rehabilitation after stroke. J. Neurol. Phys. Ther 41(Suppl. 3), S17–S23. 10.1097/NPT.0000000000000180
    1. Stroemer R. P., Kent T. A., Hulsebosch C. E. (1998). Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke 29, 2381–2393; discussion: 2393–2395. 10.1161/01.STR.29.11.2381
    1. Sutton R. L., Hovda D. A., Feeney D. M. (1989). Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats. Behav. Neurosci. 103, 837–841. 10.1037/0735-7044.103.4.837
    1. Sutton R. L., Hovda D. A., Chen M. J., Feeney D. M. (2000). Alleviation of brain injury-induced cerebral metabolic depression by amphetamine: a cytochrome oxidase histochemistry study. Neural Plast. 7, 109–125. 10.1155/NP.2000.109
    1. Takeuchi T., Duszkiewicz A. J., Sonneborn A., Spooner P. A., Yamasaki M., Watanabe M., et al. . (2016). Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362. 10.1038/nature19325
    1. Takeuchi Y., Fukunaga K., Miyamoto E. (2002). Activation of nuclear Ca(2+)/calmodulin-dependent protein kinase II and brain-derived neurotrophic factor gene expression by stimulation of dopamine D2 receptor in transfected NG108-15 cells. J. Neurochem. 82, 316–328. 10.1046/j.1471-4159.2002.00967.x
    1. Tamura A., Kirino T., Sano K., Takagi K., Oka H. (1990). Atrophy of the ipsilateral substantia nigra following middle cerebral artery occlusion in the rat. Brain Res. 510, 154–157
    1. Tan C. O. (2009). Anticipatory changes in regional cerebral hemodynamics: a new role for dopamine? J. Neurophysiol. 101, 2738–2740. 10.1152/jn.00141.2009
    1. Tardy J., Pariente J., Leger A., Dechaumont-Palacin S., Gerdelat A., Guiraud V., et al. . (2006). Methylphenidate modulates cerebral post-stroke reorganization. Neuroimage 33, 913–922. 10.1016/j.neuroimage.2006.07.014
    1. Thirugnanasambandam N., Grundey J., Paulus W., Nitsche M. A. (2011). Dose-dependent nonlinear effect of L-DOPA on paired associative stimulation-induced neuroplasticity in humans. J. Neurosci. 31, 5294–5299. 10.1523/JNEUROSCI.6258-10.2011
    1. Toner C. C., Stamford J. A. (1996). 'Real time' measurement of dopamine release in an in vitro model of neostriatal ischaemia. J. Neurosci. Methods 67, 133–140.
    1. Tran D. A., Pajaro-Blazquez M., Daneault J. F., Gallegos J. G., Pons J., Fregni F., et al. . (2016). Combining Dopaminergic facilitation with robot-assisted upper limb therapy in stroke survivors: a focused review. Am. J. Phys. Med. Rehabil. 95, 459–474. 10.1097/PHM.0000000000000438
    1. Treig T., Werner C., Sachse M., Hesse S. (2003). No benefit from D-amphetamine when added to physiotherapy after stroke: a randomized, placebo-controlled study. Clin. Rehabil. 17, 590–599. 10.1191/0269215503cr653oa
    1. Uzdensky A., Demyanenko S., Fedorenko G., Lapteva T., Fedorenko A. (2017). Protein profile and morphological alterations in penumbra after focal photothrombotic infarction in the rat cerebral cortex. Mol. Neurobiol. 54, 4172–4188. 10.1007/s12035-016-9964-5
    1. Vachalathiti R., Asavavallobh C., Nilanont Y., Poungvarin N. (2001). Comparison of physical therapy and physical therapy with amphetamine in sensorimotor recovery of acute stroke patients: randomised controlled trial. J. Neurol. Sci. 187(Suppl. 1):S253.
    1. Vaillancourt D. E., Schonfeld D., Kwak Y., Bohnen N. I., Seidler R. (2013). Dopamine overdose hypothesis: evidence and clinical implications. Mov. Disord. 28, 1920–1929. 10.1002/mds.25687
    1. van der Kemp J., Dorresteijn M., Ten Brink A. F., Nijboer T. C., Visser-Meily J. M. (2017). Pharmacological treatment of visuospatial neglect: a systematic review. J. Stroke Cerebrovasc. Dis. 26, 686–700. 10.1016/j.jstrokecerebrovasdis.2017.02.012
    1. Vanderheyden P., Ebinger G., Kanarek L., Vauquelin G. (1986). Epinephrine and norepinephrine stimulation of adenylate cyclase in bovine retina homogenate: evidence for interaction with the dopamine D1 receptor. Life Sci. 38, 1221–1227. 10.1016/0024-3205(86)90177-3
    1. Viale L., Catoira N. P., Di Girolamo G., Gonzalez C. D. (2018). Pharmacotherapy and motor recovery after stroke. Expert Rev. Neurother. 18, 65–82. 10.1080/14737175.2018.1400910
    1. von Essen C. (1974). Effects of dopamine on the cerebral blood flow in the dog. Acta Neurol. Scand. 50, 39–52. 10.1111/j.1600-0404.1974.tb01345.x
    1. Voon V., Napier T. C., Frank M. J., Sgambato-Faure V., Grace A. A., Rodriguez-Oroz M., et al. . (2017). Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurol. 16, 238–250. 10.1016/S1474-4422(17)30004-2
    1. Wada K., Sugimori H., Bhide P. G., Moskowitz M. A., Finklestein S. P. (2003). Effect of basic fibroblast growth factor treatment on brain progenitor cells after permanent focal ischemia in rats. Stroke 34, 2722–2728. 10.1161/01.STR.0000094421.61917.71
    1. Walker-Batson D., Smith P., Curtis S., Unwin H., Greenlee R. (1995). Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 26, 2254–2259. 10.1161/01.STR.26.12.2254
    1. Wang M., Wong A. H., Liu F. (2012). Interactions between NMDA and dopamine receptors: a potential therapeutic target. Brain Res. 1476, 154–163. 10.1016/j.brainres.2012.03.029
    1. Wang Q. M., Cui H., Han S. J., Black-Schaffer R., Volz M. S., Lee Y. T., et al. . (2014). Combination of transcranial direct current stimulation and methylphenidate in subacute stroke. Neurosci. Lett. 569, 6–11. 10.1016/j.neulet.2014.03.011
    1. Wehling E., Naess H., Wollschlaeger D., Hofstad H., Bramerson A., Bende M., et al. (2015). Olfactory dysfunction in chronic stroke patients. BMC Neurol. 15:199 10.1186/s12883-015-0463-5
    1. Weinberger J. (2002). The role of dopamine in cerebral ischemic damage: a review of studies with Gerald Cohen. Parkinsonism Relat. Disord. 8, 413–416. 10.1016/S1353-8020(02)00023-8
    1. Weinberger J., Cohen G., Nieves-Rosa J. (1983). Nerve terminal damage in cerebral ischemia: greater susceptibility of catecholamine nerve terminals relative to serotonin nerve terminals. Stroke 14, 986–989. 10.1161/01.STR.14.6.986
    1. Weintraub D., Koester J., Potenza M. N., Siderowf A. D., Stacy M., Voon V., et al. . (2010). Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch. Neurol. 67, 589–595. 10.1001/archneurol.2010.65
    1. Willuhn I., Steiner H. (2006). Motor-skill learning-associated gene regulation in the striatum: effects of cocaine. Neuropsychopharmacology 31, 2669–2682. 10.1038/sj.npp.1300995
    1. Willuhn I., Steiner H. (2008). Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience 153, 249–258. 10.1016/j.neuroscience.2008.01.041
    1. Willuhn I., Sun W., Steiner H. (2003). Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. Eur. J. Neurosci. 17, 1053–1066. 10.1046/j.1460-9568.2003.02525.x
    1. Winter B., Juckel G., Viktorov I., Katchanov J., Gietz A., Sohr R., et al. . (2005). Anxious and hyperactive phenotype following brief ischemic episodes in mice. Biol. Psychiatry 57, 1166–1175. 10.1016/j.biopsych.2005.02.010
    1. Wirkner K., Krause T., Koles L., Thummler S., Al-Khrasani M., Illes P. (2004). D1 but not D2 dopamine receptors or adrenoceptors mediate dopamine-induced potentiation of N-methyl-d-aspartate currents in the rat prefrontal cortex. Neurosci. Lett. 372, 89–93. 10.1016/j.neulet.2004.09.015
    1. Witte A. V., Kurten J., Jansen S., Schirmacher A., Brand E., Sommer J., et al. . (2012). Interaction of BDNF and COMT polymorphisms on paired-associative stimulation-induced cortical plasticity. J. Neurosci. 32, 4553–4561. 10.1523/JNEUROSCI.6010-11.2012
    1. Wolf M. E., Mangiavacchi S., Sun X. (2003). Mechanisms by which dopamine receptors may influence synaptic plasticity. Ann. N. Y. Acad. Sci. 1003, 241–249. 10.1196/annals.1300.015
    1. Wolf W. A., Martin J. L., Kartje G. L., Farrer R. G. (2014). Evidence for fibroblast growth factor-2 as a mediator of amphetamine-enhanced motor improvement following stroke. PLoS ONE 9:e108031. 10.1371/journal.pone.0108031
    1. Xing B., Guo J., Meng X., Wei S. G., Li S. B. (2012). The dopamine D1 but not D3 receptor plays a fundamental role in spatial working memory and BDNF expression in prefrontal cortex of mice. Behav. Brain Res. 235, 36–41. 10.1016/j.bbr.2012.06.035
    1. Xu T. X., Ma Q., Spealman R. D., Yao W. D. (2010). Amphetamine modulation of long-term potentiation in the prefrontal cortex: dose dependency, monoaminergic contributions, and paradoxical rescue in hyperdopaminergic mutant. J. Neurochem. 115, 1643–1654. 10.1111/j.1471-4159.2010.07073.x
    1. Xu Y., Zhang W., Klaus J., Young J., Koerner I., Sheldahl L. C., et al. . (2006). Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection. Proc. Natl. Acad. Sci. U.S.A. 103, 14489–14494. 10.1073/pnas.0602932103
    1. Yamada K., Goto S., Yoshikawa M., Ushio Y. (1996). Gabaergic transmission and tyrosine hydroxylase expression in the nigral dopaminergic neurons: an in vivo study using a reversible ischemia model of rats. Neuroscience 73, 783–789. 10.1016/0306-4522(96)00041-3
    1. Yamamoto B. K., Moszczynska A., Gudelsky G. A. (2010). Amphetamine toxicities: classical and emerging mechanisms. Ann. N. Y. Acad. Sci. 1187, 101–121. 10.1111/j.1749-6632.2009.05141.x
    1. Yulug B., Yildiz A., Guzel O., Kilic E., Schabitz W. R., Kilic E. (2006a). Risperidone attenuates brain damage after focal cerebral ischemia in vivo. Brain Res. Bull. 69, 656–659. 10.1016/j.brainresbull.2006.03.017
    1. Yulug B., Yildiz A., Hudaoglu O., Kilic E., Cam E., Schabitz W. R. (2006b). Olanzapine attenuates brain damage after focal cerebral ischemia in vivo. Brain Res. Bull. 71, 296–300. 10.1016/j.brainresbull.2006.09.018
    1. Zervas N. T., Hori H., Negora M., Wurtman R. J., Larin F., Lavyne M. H. (1974). Reduction in brain dopamine following experimental cerebral ischaemia. Nature 247, 283–284. 10.1038/247283a0
    1. Zhang G., Zhang Y., Zhang C., Wang Y., Ma G., Nie K., et al. . (2016). Striatal silent lacunar infarction is associated with changes to the substantia nigra in patients with early-stage Parkinson's disease: a diffusion kurtosis imaging study. J. Clin. Neurosci. 33, 138–141. 10.1016/j.jocn.2016.03.032
    1. Zhang J., Zhang Y., Xing S., Liang Z., Zeng J. (2012). Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke 43, 1700–1705. 10.1161/STROKEAHA.111.632448
    1. Zhang X., Zhou Z., Wang D., Li A., Yin Y., Gu X., et al. . (2009). Activation of phosphatidylinositol-linked D1-like receptor modulates FGF-2 expression in astrocytes via IP3-dependent Ca2+ signaling. J. Neurosci. 29, 7766–7775. 10.1523/JNEUROSCI.0389-09.2009
    1. Zhang Y., Chen Y., Wu J., Manaenko A., Yang P., Tang J., et al. . (2015). Activation of dopamine D2 receptor suppresses neuroinflammation through alphab-crystalline by inhibition of NF-kappaB nuclear translocation in experimental ICH mice model. Stroke 46, 2637–2646. 10.1161/STROKEAHA.115.009792
    1. Zhao F., Kuroiwa T., Miyasaka N., Nagaoka T., Nakane M., Tamura A., et al. . (2001). Characteristic changes in T(2)-value, apparent diffusion coefficient, and ultrastructure of substantia nigra evolving exofocal postischemic neuronal death in rats. Brain Res. 895, 238–244. 10.1016/S0006-8993(00)03281-9
    1. Zhao F., Kuroiwa T., Miyasaka N., Nagaoka T., Nakane M., Tamura A., et al. . (2002). Ultrastructural and MRI study of the substantia nigra evolving exofocal post-ischemic neuronal death in the rat. Neuropathology 22, 91–105. 10.1046/j.1440-1789.2002.00437.x

Source: PubMed

3
S'abonner