Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of VIS649 (Sibeprenlimab), an APRIL-Neutralizing IgG2 Monoclonal Antibody, in Healthy Volunteers

Mohit Mathur, Jonathan Barratt, Yusuke Suzuki, Frank Engler, Marcela F Pasetti, Jill Yarbrough, Susan Sloan, David Oldach, Mohit Mathur, Jonathan Barratt, Yusuke Suzuki, Frank Engler, Marcela F Pasetti, Jill Yarbrough, Susan Sloan, David Oldach

Abstract

Introduction: VIS649 (sibeprenlimab), a humanized IgG2 monoclonal antibody that inhibits APRIL, is being developed as a potential treatment for IgA nephropathy (IgAN). This phase 1, first-in-human, randomized, double-blind, single ascending dose study aimed to evaluate the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of VIS649 in healthy adults.

Methods: Participants were randomized to VIS649 (sequential i.v. dosing cohorts: 0.5, 2.0, 6.0, 12.0 mg/kg) or placebo; a further cohort received VIS649 6.0 mg/kg or placebo followed by a tetanus/diphtheria vaccine challenge.

Results: A total of 51 participants were randomized, dosed, and analyzed for safety (7 for each VIS649 dose; 8 for placebo; 10 for VIS649 + vaccine; 5 for placebo + vaccine). There were no serious adverse events (AEs) or AEs leading to study discontinuation. VIS649 had nonlinear PK: half-life increased with dose and drug exposure increased in a greater than dose-proportional manner. Serum APRIL, IgA, galactose-deficient (Gd) IgA1, IgG, and IgM were reversibly suppressed in a dose-dependent manner, with a dose-response in time to recovery. Tetanus and diphtheria serum IgG titers increased after recall vaccination.

Conclusion: VIS649 was safe, well tolerated, and reversibly suppressed APRIL and various immunoglobulins, without loss of antigen-specific vaccination response. Further clinical development of VIS649 for IgAN is warranted. Trial registration: ClinicalTrials.gov: NCT03719443.

Keywords: APRIL; IgA nephropathy; clinical trial; galactose-deficient IgA; glomerulonephritis; monoclonal antibody.

© 2022 International Society of Nephrology. Published by Elsevier Inc.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Participant disposition. a1 participant lost to follow-up, 1 participant withdrew. b1 participant lost to follow-up. PD, pharmacodynamics; PK, pharmacokinetics.
Figure 2
Figure 2
Mean serum VIS649 concentration over time after a single i.v. dose (pharmacokinetics sample). Values below LLQ (0.1 μg/ml) were imputed as the LLQ. LLQ, lower limit of quantification.
Figure 3
Figure 3
Mean percentage change from baseline and absolute serum concentration for (a) IgA, (b) IgG, (c) IgM, and (d) Gd-IgA1, by treatment (pharmacodynamics sample). Normal ranges: IgA, 66–433 mg/dl; IgG, 635–1741 mg/dl; IgM, 45–281 mg/dl. Lower limit of quantification for Gd-IgA1, 0.5 μg/ml. Gd, galactose-deficient.
Figure 4
Figure 4
Median (IQR) percentage change from baseline in serum (a) APRIL concentration and (b) BAFF concentration, by treatment (pharmacodynamics sample). BAFF, B cell activating factor; IQR, interquartile range.
Figure 5
Figure 5
(a) Tetanus and (b) diphtheria IgG titer levels (vaccinated safety sample). Vaccine administered at the week 4 visit (week 4 titers were prevaccination). Lower limit of quantification for diphtheria IgG, 0.1 IU/ml. ULQ for tetanus IgG, 16.0 IU/ml; for diphtheria IgG, 2.00 IU/ml. ULQ, upper limit of quantification.

References

    1. Kim Y.G., Alvarez M., Suzuki H., et al. Pathogenic role of a proliferation-inducing ligand (APRIL) in murine IgA nephropathy. PLoS One. 2015;10 doi: 10.1371/journal.pone.0137044.
    1. Han S.S., Yang S.H., Choi M., et al. The role of TNF superfamily member 13 in the progression of IgA nephropathy. J Am Soc Nephrol. 2016;27:3430–3439. doi: 10.1681/ASN.2015060677.
    1. Zhai Y.L., Zhu L., Shi S.F., Liu L.J., Lv J.C., Zhang H. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine (Baltimore) 2016;95 doi: 10.1097/MD.0000000000003099.
    1. Muto M., Manfroi B., Suzuki H., et al. Toll-like receptor 9 stimulation induces aberrant expression of a proliferation-inducing ligand by tonsillar germinal center B cells in IgA nephropathy. J Am Soc Nephrol. 2017;28:1227–1238. doi: 10.1681/ASN.2016050496.
    1. Takahara M., Nagato T., Nozaki Y., et al. A proliferation-inducing ligand (APRIL) induced hyper-production of IgA from tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol. 2019;341:103925. doi: 10.1016/j.cellimm.2019.103925.
    1. Makita Y., Suzuki H., Kano T., et al. TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 2020;97:340–349. doi: 10.1016/j.kint.2019.08.022.
    1. Kiryluk K., Li Y., Scolari F., et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46:1187–1196. doi: 10.1038/ng.3118.
    1. Zhong Z., Feng S.Z., Xu R.C., et al. Association of TNFSF13 polymorphisms with IgA nephropathy in a Chinese Han population. J Gene Med. 2017;19 doi: 10.1002/jgm.2966.
    1. Mackay F., Schneider P., Rennert P., Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–264. doi: 10.1146/annurev.immunol.21.120601.141152.
    1. Castigli E., Scott S., Dedeoglu F., et al. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci U S A. 2004;101:3903–3908. doi: 10.1073/pnas.0307348101.
    1. O’Connor B.P., Raman V.S., Erickson L.D., et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004;199:91–97. doi: 10.1084/jem.20031330.
    1. Avery D.T., Kalled S.L., Ellyard J.I., et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells [published correction appears in J Clin Invest. 2004;113:1069] J Clin Invest. 2003;112:286–297. doi: 10.1172/JCI18025.
    1. Stein J.V., López-Fraga M., Elustondo F.A., et al. APRIL modulates B and T cell immunity. J Clin Invest. 2002;109:1587–1598. doi: 10.1172/JCI15034.
    1. Myette J.R., Kano T., Suzuki H., et al. A proliferation inducing ligand (APRIL) targeted antibody is a safe and effective treatment of murine IgA nephropathy. Kidney Int. 2019;96:104–116. doi: 10.1016/j.kint.2019.01.031.
    1. Chorny A., Puga I., Cerutti A. Innate signaling networks in mucosal IgA class switching. Adv Immunol. 2010;107:31–69. doi: 10.1016/B978-0-12-381300-8.00002-2.
    1. Liang J.L., Tiwari T., Moro P., et al. Prevention of pertussis, tetanus, and diphtheria with vaccines in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) MMWR Recomm Rep. 2018;67:1–44. doi: 10.15585/mmwr.rr6702a1.
    1. World Health Organization (WHO) The immunological basis for immunization series. module 3: tetanus. World Health Organization. Published 2018. Accessed January 29, 2021.
    1. Begg N. Manual for the Management and Control of Diphtheria in the European Region. WHO Regional Office for Europe. Published 1994. Accessed January 29, 2021.
    1. Soleto I., Morel E., Martín D., Granja A.G., Tafalla C. Regulation of IgM+ B cell activities by rainbow trout APRIL reveals specific effects of this cytokine in lower vertebrates. Front Immunol. 2018;9:1880. doi: 10.3389/fimmu.2018.01880.
    1. Dall’Era M., Chakravarty E., Wallace D., et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 2007;56:4142–4150. doi: 10.1002/art.23047.
    1. Ginzler E.M., Wax S., Rajeswaran A., et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther. 2012;14:R33. doi: 10.1186/ar3738.
    1. Isenberg D., Gordon C., Licu D., Copt S., Rossi C.P., Wofsy D. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial) [published correction appears in Ann Rheum Dis. 2016;75:946] Ann Rheum Dis. 2015;74:2006–2015. doi: 10.1136/annrheumdis-2013-205067.
    1. Kaegi C., Steiner U.C., Wuest B., Crowley C., Boyman O. Systematic review of safety and efficacy of atacicept in treating immune-mediated disorders. Front Immunol. 2020;11:433. doi: 10.3389/fimmu.2020.00433.
    1. Lavie F., Miceli-Richard C., Ittah M., Sellam J., Gottenberg J.E., Mariette X. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis. 2007;66:700–703. doi: 10.1136/ard.2006.060772.
    1. Pollard R.P.E., Abdulahad W.H., Vissink A., et al. Serum levels of BAFF, but not APRIL, are increased after rituximab treatment in patients with primary Sjögren’s syndrome: data from a placebo-controlled clinical trial. Ann Rheum Dis. 2013;72:146–148. doi: 10.1136/annrheumdis-2012-202071.
    1. Perumal J.S., Kister I., Howard J., Herbert J. Disease exacerbation after rituximab induction in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015;2:e61. doi: 10.1212/NXI.0000000000000061.
    1. Hébert V., Maho-Vaillant M., Golinski M.L., et al. Modifications of the BAFF/BAFF-receptor axis in patients with pemphigus treated with rituximab versus standard corticosteroid regimen. Front Immunol. 2021;12:666022. doi: 10.3389/fimmu.2021.666022.
    1. Lafayette R.A., Canetta P.A., Rovin B.H., et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J Am Soc Nephrol. 2017;28:1306–1313. doi: 10.1681/ASN.2016060640.
    1. An G. Concept of pharmacologic target-mediated drug disposition in large-molecule and small-molecule compounds. J Clin Pharmacol. 2020;60:149–163. doi: 10.1002/jcph.1545.
    1. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56:248–252. doi: 10.1038/clpt.1994.134.

Source: PubMed

3
S'abonner