Resting-state functional brain networks in adults with a new diagnosis of focal epilepsy

Batil K Alonazi, Simon S Keller, Nicholas Fallon, Valerie Adams, Kumar Das, Anthony G Marson, Vanessa Sluming, Batil K Alonazi, Simon S Keller, Nicholas Fallon, Valerie Adams, Kumar Das, Anthony G Marson, Vanessa Sluming

Abstract

Objectives: Newly diagnosed focal epilepsy (NDfE) is rarely studied, particularly using advanced neuroimaging techniques. Many patients with NDfE experience cognitive impairments, particularly with respect to memory, sustained attention, mental flexibility, and executive functioning. Cognitive impairments have been related to alterations in resting-state functional brain networks in patients with neurological disorders. In the present study, we investigated whether patients with NDfE had altered connectivity in large-scale functional networks using resting-state functional MRI.

Methods: We recruited 27 adults with NDfE and 36 age- and sex-matched healthy controls. Resting-state functional MRI was analyzed using the Functional Connectivity Toolbox (CONN). We investigate reproducibly determined large-scale functional networks, including the default mode, salience, fronto-parietal attention, sensorimotor, and language networks using a seed-based approach. Network comparisons between patients and controls were thresholded using a FDR cluster-level correction approach.

Results: We found no significant differences in functional connectivity between seeds within the default mode, salience, sensorimotor, and language networks and other regions of the brain between patients and controls. However, patients with NDfE had significantly reduced connectivity between intraparietal seeds within the fronto-parietal attention network and predominantly frontal and temporal cortical regions relative to controls; this finding was demonstrated including and excluding the patients with brain lesions. No common alteration in brain structure was observed in patients using voxel-based morphometry. Findings were not influenced by treatment outcome at 1 year.

Conclusions: Patients with focal epilepsy have brain functional connectivity alterations at diagnosis. Functional brain abnormalities are not necessarily a consequence of the chronicity of epilepsy and are present when seizures first emerge.

Keywords: brain connectivity; cognitive dysfunction; new-onset seizures; treatment outcome.

© 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Location of seeds for each resting‐state network. See Table 2 for anatomical locations and coordinates
Figure 2
Figure 2
Lesions identified in the present study (see Table 1 for corresponding information). Patient 1 (P1): mesial temporal focal cortical dysplasia and atrophy of ipsilateral hippocampal head on T1‐weighted (left) and T2‐FLAIR (right) images; P3: orbitofrontal gliosis on T1‐weighted (left) and T2‐FLAIR (right) images; P4: focal cortical dysplasia of middle frontal gyrus on T2‐FLAIR (left) and T2‐weighted (right) images; P9: unilateral hippocampal atrophy on T1‐weighted (left) and T2‐weighted (right) images; P12: temporal lobe white matter alteration on T2‐weighted (left) and T2‐FLAIR (right) images; P24: frontal lobe gliosis and encephalomalacia, corpus callosum atrophy and contrecoup posterior gliosis on T2‐FLAIR (left) and T1‐weighted (right images). Patient 21 (slight unilateral hippocampal alteration) not illustrated. Images are neurological convention (right = right)
Figure 3
Figure 3
Resting‐state functional networks shown separately for controls (C) and patients (P). Regions correlated (orange) and anticorrelated (purple) with seeds are indicated. Specific seeds used to generate networks indicated here include medial prefrontal cortex (default mode), primary motor area (sensorimotor), anterior cingulate gyrus (salience), left intraparietal sulcus (fronto‐parietal), and left inferior frontal gyrus (language). Networks were reproducibly reconstructed using the alternative seeds shown in Figure 1. Note the visual difference between controls and patients in the fronto‐parietal attentional network
Figure 4
Figure 4
Significantly reduced functional connectivity within the fronto‐parietal attentional network in patients relative to controls (left intraparietal sulcus seed). Hypoconnectivity in all patients relative to controls is projected onto a 3D rendering (a) and axial sections (b) to illustrate anatomical locations. The spatial distribution of hypoconnectivity in all patients (c) and patients with normal MRI scans (d) is compared using glass brain projections. The corresponding information for each cluster is provided in Tables 3 and 4

References

    1. Aikia, M. , Kalviainen, R. , Mervaala, E. , & Riekkinen, P. J., Sr. (1999). Predictors of seizure outcome in newly diagnosed partial epilepsy: Memory performance as a prognostic factor. Epilepsy Research, 37, 159–167. 10.1016/S0920-1211(99)00059-5
    1. Aikia, M. , Kalviainen, R. , & Riekkinen, P. J. (1995). Verbal learning and memory in newly diagnosed partial epilepsy. Epilepsy Research, 22, 157–164. 10.1016/0920-1211(95)00042-9
    1. Aikia, M. , Salmenpera, T. , Partanen, K. , & Kalviainen, R. (2001). Verbal memory in newly diagnosed patients and patients with chronic left temporal lobe epilepsy. Epilepsy and Behavior, 2, 20–27. 10.1006/ebeh.2000.0140
    1. Andrews‐Hanna, J. R. , Smallwood, J. , & Spreng, R. N. (2014). The default network and self‐generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 29–52.
    1. Annegers, J. F. , Hauser, W. A. , & Elveback, L. R. (1979). Remission of seizures and relapse in patients with epilepsy. Epilepsia, 20, 729–737. 10.1111/j.1528-1157.1979.tb04857.x
    1. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113. 10.1016/j.neuroimage.2007.07.007
    1. Baker, G. A. , Taylor, J. , & Aldenkamp, A. P. (2011). Newly diagnosed epilepsy: Cognitive outcome after 12 months. Epilepsia, 52, 1084–1091.
    1. Behzadi, Y. , Restom, K. , Liau, J. , & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37, 90–101. 10.1016/j.neuroimage.2007.04.042
    1. Bernhardt, B. C. , Hong, S. , Bernasconi, A. , & Bernasconi, N. (2013). Imaging structural and functional brain networks in temporal lobe epilepsy. Frontiers in Human Neuroscience, 7, 624 10.3389/fnhum.2013.00624
    1. Besson, P. , Bandt, S. K. , Proix, T. , Lagarde, S. , Jirsa, V. , Ranjeva, J.‐P. , … Guye, M. (2017). Anatomic consistencies across epilepsies: A stereotactic‐EEG informed high‐resolution structural connectivity study. Brain, 10.1093/brain/awx181
    1. Bonilha, L. , Helpern, J. A. , Sainju, R. , Nesland, T. , Edwards, J. C. , Glazier, S. S. , & Tabesh, A. (2013). Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy. Neurology, 81, 1704–1710. 10.1212/01.wnl.0000435306.95271.5f
    1. Bonilha, L. , Jensen, J. H. , Baker, N. , Breedlove, J. , Nesland, T. , Lin, J. J. , … Kuzniecky, R. I. (2015). The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy. Neurology, 84, 1846–1853. 10.1212/WNL.0000000000001548
    1. Briellmann, R. S. , Berkovic, S. F. , Syngeniotis, A. , King, M. A. , & Jackson, G. D. (2002). Seizure‐associated hippocampal volume loss: A longitudinal magnetic resonance study of temporal lobe epilepsy. Annals of Neurology, 51, 641–644. 10.1002/ana.10171
    1. Cabeza, R. , & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47. 10.1162/08989290051137585
    1. Cataldi, M. , Avoli, M. , & de Villers‐Sidani, E. (2013). Resting state networks in temporal lobe epilepsy. Epilepsia, 54, 2048–2059. 10.1111/epi.12400
    1. Corbetta, M. , & Shulman, G. L. (2002). Control of goal‐directed and stimulus‐driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. 10.1038/nrn755
    1. de Campos, B. M. , Coan, A. C. , Lin Yasuda, C. , Casseb, R. F. , & Cendes, F. (2016). Large‐scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Human Brain Mapping, 37, 3137–3152. 10.1002/hbm.23231
    1. Dreifuss, S. , Vingerhoets, F. J. , Lazeyras, F. , Andino, S. G. , Spinelli, L. , Delavelle, J. , & Seeck, M. (2001). Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology, 57, 1636–1641. 10.1212/WNL.57.9.1636
    1. Duncan, J. S. (2005). Brain imaging in idiopathic generalized epilepsies. Epilepsia, 46(Suppl 9), 108–111. 10.1111/j.1528-1167.2005.00321.x
    1. Engelberts, N. H. , Klein, M. , van der Ploeg, H. M. , Heimans, J. J. , Jolles, J. , & Kasteleijn‐Nolst Trenite, D. G. (2002). Cognition and health‐related quality of life in chronic well‐controlled patients with partial epilepsy on carbamazepine monotherapy. Epilepsy and Behavior, 3, 316–321. 10.1016/S1525-5050(02)00036-7
    1. Fallon, N. , Chiu, Y. , Nurmikko, T. , & Stancak, A. (2016). Functional connectivity with the default mode network is altered in fibromyalgia patients. PLoS ONE, 11, e0159198 10.1371/journal.pone.0159198
    1. Fan, J. , McCandliss, B. D. , Fossella, J. , Flombaum, J. I. , & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26, 471–479. 10.1016/j.neuroimage.2005.02.004
    1. Farokhian, F. , Beheshti, I. , Sone, D. , & Matsuda, H. (2017). Comparing CAT12 and VBM8 for detecting brain morphological abnormalities in temporal lobe epilepsy. Frontiers in Neurology,8, 428 10.3389/fneur.2017.00428
    1. Fisher, R. S. , Cross, J. H. , French, J. A. , Higurashi, N. , Hirsch, E. , Jansen, F. E. , … Zuberi, S. M. (2017). Operational classification of seizure types by the International League against Epilepsy: Position paper of the ILAE Commission for classification and terminology. Epilepsia, 58, 522–530. 10.1111/epi.13670
    1. Glenn, G. R. , Jensen, J. H. , Helpern, J. A. , Spampinato, M. V. , Kuzniecky, R. , Keller, S. S. , & Bonilha, L. (2016). Epilepsy‐related cytoarchitectonic abnormalities along white matter pathways. Journal of Neurology, Neurosurgery and Psychiatry, 87, 930–936. 10.1136/jnnp-2015-312980
    1. Greicius, M. D. , Krasnow, B. , Reiss, A. L. , & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258. 10.1073/pnas.0135058100
    1. Hagemann, G. , Lemieux, L. , Free, S. L. , Krakow, K. , Everitt, A. D. , Kendall, B. E. , … Shorvon, S. D. (2002). Cerebellar volumes in newly diagnosed and chronic epilepsy. Journal of Neurology, 249, 1651–1658. 10.1007/s00415-002-0843-9
    1. He, X. , Doucet, G. E. , Sperling, M. , Sharan, A. , & Tracy, J. I. (2015). Reduced thalamocortical functional connectivity in temporal lobe epilepsy. Epilepsia, 56, 1571–1579. 10.1111/epi.13085
    1. Ichesco, E. , Quintero, A. , Clauw, D. J. , Peltier, S. , Sundgren, P. M. , Gerstner, G. E. , & Schmidt‐Wilcke, T. (2012). Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: A pilot study. Headache: the Journal of Head and Face Pain, 52, 441–454. 10.1111/j.1526-4610.2011.01998.x
    1. Kaiser, R. H. , Andrews‐Hanna, J. R. , Wager, T. D. , & Pizzagalli, D. A. (2015). Large‐scale network dysfunction in major depressive disorder: A meta‐analysis of resting‐state functional connectivity. JamaPsychiatry, 72, 603–611. 10.1001/jamapsychiatry.2015.0071
    1. Kalviainen, R. , Aikia, M. , Helkala, E. L. , Mervaala, E. , & Riekkinen, P. J. (1992). Memory and attention in newly diagnosed epileptic seizure disorder. Seizure, 1, 255–262. 10.1016/1059-1311(92)90034-X
    1. Kay, B. P. , DiFrancesco, M. W. , Privitera, M. D. , Gotman, J. , Holland, S. K. , & Szaflarski, J. P. (2013). Reduced default mode network connectivity in treatment‐resistant idiopathic generalized epilepsy. Epilepsia, 54, 461–470. 10.1111/epi.12057
    1. Kay, B. , & Szaflarski, J. P. (2014). EEG/fMRI contributions to our understanding of genetic generalized epilepsies. Epilepsy and Behavior, 34, 129–135. 10.1016/j.yebeh.2014.02.030
    1. Keller, S. S. , O'Muircheartaigh, J. , Traynor, C. , Towgood, K. , Barker, G. J. , & Richardson, M. P. (2014). Thalamotemporal impairment in temporal lobe epilepsy: A combined MRI analysis of structure, integrity, and connectivity. Epilepsia, 55, 306–315. 10.1111/epi.12520
    1. Keller, S. S. , & Roberts, N. (2008). Voxel‐based morphometry of temporal lobe epilepsy: An introduction and review of the literature. Epilepsia, 49, 741–757. 10.1111/j.1528-1167.2007.01485.x
    1. Keller, S. S. , Glenn, G. R. , Weber, B. , Kreilkamp, B. A. , Jensen, J. H. , Helpern, J. A. , … Bonilha, L. (2017). Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy. Brain, 140, 68–82. 10.1093/brain/aww280
    1. Keller, S. S. , Richardson, M. P. , Schoene‐Bake, J. C. , O'Muircheartaigh, J. , Elkommos, S. , Kreilkamp, B. , … Weber, B. (2015). Thalamotemporal alteration and postoperative seizures in temporal lobe epilepsy. Annals of Neurology, 77, 760–774. 10.1002/ana.24376
    1. Kim, H. C. , Kim, S. E. , Lee, B. I. , & Park, K. M. (2017). Can we predict drug response by volumes of the corpus callosum in newly diagnosed focal epilepsy? Brain and Behavior, 7, e00751 10.1002/brb3.751
    1. Kim, J. B. , Suh, S. I. , Seo, W. K. , Oh, K. , Koh, S. B. , & Kim, J. H. (2014). Altered thalamocortical functional connectivity in idiopathic generalized epilepsy. Epilepsia, 55, 592–600. 10.1111/epi.12580
    1. Kim, L. G. , Johnson, T. L. , Marson, A. G. , Chadwick, D. W. , & group, M.M.S., (2006). Prediction of risk of seizure recurrence after a single seizure and early epilepsy: Further results from the MESS trial. Lancet Neurology, 5, 317–322. 10.1016/S1474-4422(06)70383-0
    1. Koepp, M. J. , & Woermann, F. G. (2005). Imaging structure and function in refractory focal epilepsy. Lancet Neurology, 4, 42–53. 10.1016/S1474-4422(04)00965-2
    1. Kwan, P. , & Brodie, M. J. (2000). Early identification of refractory epilepsy. New England Journal of Medicine, 342, 314–319. 10.1056/NEJM200002033420503
    1. Li, H. J. , Hou, X. H. , Liu, H. H. , Yue, C. L. , He, Y. , & Zuo, X. N. (2015). Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: A meta‐analysis of 75 fMRI studies. Human Brain Mapping, 36, 1217–1232. 10.1002/hbm.22689
    1. Lin, H. Y. , Tseng, W. Y. , Lai, M. C. , Matsuo, K. , & Gau, S. S. (2015). Altered resting‐state frontoparietal control network in children with attention‐deficit/hyperactivity disorder. Journal of the International Neuropsychological Society: JINS, 21, 271–284. 10.1017/S135561771500020X
    1. Liu, R. S. , Lemieux, L. , Bell, G. S. , Bartlett, P. A. , Sander, J. W. , Sisodiya, S. M. , … Duncan, J. S. (2001). A longitudinal quantitative MRI study of community‐based patients with chronic epilepsy and newly diagnosed seizures: Methodology and preliminary findings. NeuroImage, 14, 231–243. 10.1006/nimg.2001.0773
    1. Liu, R. S. , Lemieux, L. , Bell, G. S. , Sisodiya, S. M. , Bartlett, P. A. , Shorvon, S. D. , … Duncan, J. S. (2002). The structural consequences of newly diagnosed seizures. Annals of Neurology, 52, 573–580. 10.1002/ana.10338
    1. Loscher, W. , & Ebert, U. (1996). The role of the piriform cortex in kindling. Progress in Neurobiology, 50, 427–481. 10.1016/S0301-0082(96)00036-6
    1. Markett, S. , Reuter, M. , Montag, C. , Voigt, G. , Lachmann, B. , Rudorf, S. , … Weber, B. (2014). Assessing the function of the fronto‐parietal attention network: Insights from resting‐state fMRI and the attentional network test. Human Brain Mapping, 35, 1700–1709. 10.1002/hbm.22285
    1. Marson, A. G. , Al‐Kharusi, A. M. , Alwaidh, M. , Appleton, R. , Baker, G. A. , Chadwick, D. W. , … Williamson, P. R. (2007). The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: An unblinded randomised controlled trial. Lancet, 369, 1000–1015. 10.1016/S0140-6736(07)60460-7
    1. Menon, V. (2015). Salience network In Toga A. (Ed.), Brain mapping: An encyclopedic reference. London, UK: Academic Press, Elsevier; p 597–611.
    1. Mohanraj, R. , & Brodie, M. J. (2013). Early predictors of outcome in newly diagnosed epilepsy. Seizure, 22, 333–344. 10.1016/j.seizure.2013.02.002
    1. Munsell, B. C. , Wee, C. Y. , Keller, S. S. , Weber, B. , Elger, C. , da Silva, L. A. , … Bonilha, L. (2015). Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. NeuroImage, 118, 219–230. 10.1016/j.neuroimage.2015.06.008
    1. Nieuwenhuys, R. , Voogd, J. , & van Huijzen, C. (1988). The human central nervous system. New York, NY: Springer‐Verlag.
    1. O'Muircheartaigh, J. , Vollmar, C. , Barker, G. J. , Kumari, V. , Symms, M. R. , Thompson, P. , … Richardson, M. P. (2011). Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy. Neurology, 76, 34–40. 10.1212/WNL.0b013e318203e93d
    1. O'Muircheartaigh, J. , Vollmar, C. , Barker, G. J. , Kumari, V. , Symms, M. R. , Thompson, P. , … Richardson, M. P. (2012). Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain, 135, 3635–3644. 10.1093/brain/aws296
    1. Piredda, S. , & Gale, K. (1985). A crucial epileptogenic site in the deep prepiriform cortex. Nature, 317, 623–625. 10.1038/317623a0
    1. Pohlmann‐Eden, B. (2011). Conceptual relevance of new‐onset epilepsy. Epilepsia, 52(Suppl 4), 1–6. 10.1111/j.1528-1167.2011.03142.x
    1. Pohlmann‐Eden, B. , Crocker, C. E. , & Schmidt, M. H. (2013). A conceptual framework for the use of neuroimaging to study and predict pharmacoresistance in epilepsy. Epilepsia, 54(Suppl 2), 75–79. 10.1111/epi.12190
    1. Prevey, M. L. , Delaney, R. C. , Cramer, J. A. , & Mattson, R. H. (1998). Complex partial and secondarily generalized seizure patients: Cognitive functioning prior to treatment with antiepileptic medication. VA Epilepsy Cooperative Study 264 Group. Epilepsy Research, 30, 1–9. 10.1016/S0920-1211(97)00091-0
    1. Ptak, R. (2012). The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. NeuroscientistA Review Journal Bringing Neurobiology, Neurology and Psychiatry, 18, 502–515. 10.1177/1073858411409051
    1. Pulliainen, V. , Kuikka, P. , & Jokelainen, M. (2000). Motor and cognitive functions in newly diagnosed adult seizure patients before antiepileptic medication. Acta Neurologica Scandinavica, 101, 73–78. 10.1034/j.1600-0404.2000.101002073.x
    1. Raichle, M. E. , MacLeod, A. M. , Snyder, A. Z. , Powers, W. J. , Gusnard, D. A. , & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682. 10.1073/pnas.98.2.676
    1. Riederer, F. , Lanzenberger, R. , Kaya, M. , Prayer, D. , Serles, W. , & Baumgartner, C. (2008). Network atrophy in temporal lobe epilepsy: A voxel‐based morphometry study. Neurology, 71, 419–425. 10.1212/01.wnl.0000324264.96100.e0
    1. Salmenpera, T. , Kononen, M. , Roberts, N. , Vanninen, R. , Pitkanen, A. , & Kalviainen, R. (2005). Hippocampal damage in newly diagnosed focal epilepsy: A prospective MRI study. Neurology, 64, 62–68. 10.1212/01.WNL.0000148643.36513.2A
    1. Sander, J. W. , & Shorvon, S. D. (1996). Epidemiology of the epilepsies. Journal of Neurology, Neurosurgery and Psychiatry, 61, 433–443. 10.1136/jnnp.61.5.433
    1. Saukkonen, A. , Kalviainen, R. , Partanen, K. , Vainio, P. , Riekkinen, P. , & Pitkanen, A. (1994). Do seizures cause neuronal damage? A MRI study in newly diagnosed and chronic epilepsy. NeuroReport, 6, 219–223. 10.1097/00001756-199412300-00055
    1. Scanlon, C. , Mueller, S. G. , Cheong, I. , Hartig, M. , Weiner, M. W. , & Laxer, K. D. (2013). Grey and white matter abnormalities in temporal lobe epilepsy with and without mesial temporal sclerosis. Journal of Neurology, 260, 2320–2329. 10.1007/s00415-013-6974-3
    1. Schmidt, E. L. , Burge, W. , Visscher, K. M. , & Ross, L. A. (2016). Cortical thickness in frontoparietal and cingulo‐opercular networks predicts executive function performance in older adults. Neuropsychology, 30, 322–331. 10.1037/neu0000242
    1. Su, L. , Di, Q. , Kwan, P. , Yu, N. , Zhang, Y. , Hu, Y. , & Gao, L. (2013). Prediction for relapse and prognosis of newly diagnosed epilepsy. Acta Neurologica Scandinavica, 127, 141–147. 10.1111/j.1600-0404.2012.01711.x
    1. Taylor, J. , Kolamunnage‐Dona, R. , Marson, A. G. , Smith, P. E. , Aldenkamp, A. P. , & Baker, G. A. (2010). Patients with epilepsy: Cognitively compromised before the start of antiepileptic drug treatment? Epilepsia, 51, 48–56. 10.1111/j.1528-1167.2009.02195.x
    1. Van Paesschen, W. , Duncan, J. S. , Stevens, J. M. , & Connelly, A. (1997). Etiology and early prognosis of newly diagnosed partial seizures in adults: A quantitative hippocampal MRI study. Neurology, 49, 753–757. 10.1212/WNL.49.3.753
    1. Van Paesschen, W. , Duncan, J. S. , Stevens, J. M. , & Connelly, A. (1998). Longitudinal quantitative hippocampal magnetic resonance imaging study of adults with newly diagnosed partial seizures: One‐year follow‐up results. Epilepsia, 39, 633–639. 10.1111/j.1528-1157.1998.tb01432.x
    1. van Rijckevorsel, K. (2006). Cognitive problems related to epilepsy syndromes, especially malignant epilepsies. Seizure, 15, 227–234. 10.1016/j.seizure.2006.02.019
    1. Vanhaudenhuyse, A. , Noirhomme, Q. , Tshibanda, L. J. , Bruno, M. A. , Boveroux, P. , Schnakers, C. , … Boly, M. (2010). Default network connectivity reflects the level of consciousness in non‐communicative brain‐damaged patients. Brain, 133, 161–171. 10.1093/brain/awp313
    1. Wei, H. L. , An, J. , Zeng, L. L. , Shen, H. , Qiu, S. J. , & Hu, D. W. (2015). Altered functional connectivity among default, attention, and control networks in idiopathic generalized epilepsy. Epilepsy and Behavior, 46, 118–125. 10.1016/j.yebeh.2015.03.031
    1. Whitfield‐Gabrieli, S. , Moran, J. M. , Nieto‐Castanon, A. , Triantafyllou, C. , Saxe, R. , & Gabrieli, J. D. (2011). Associations and dissociations between default and self‐reference networks in the human brain. NeuroImage, 55, 225–232. 10.1016/j.neuroimage.2010.11.048
    1. Whitfield‐Gabrieli, S. , & Nieto‐Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. BrainConnectivity, 2, 125–141.
    1. Woermann, F. G. , Free, S. L. , Koepp, M. J. , Sisodiya, S. M. , & Duncan, J. S. (1999). Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel‐based analysis of MRI. Brain, 122(Pt 11), 2101–2108. 10.1093/brain/122.11.2101
    1. Woodward, N. D. , & Cascio, C. J. (2015). Resting‐state functional connectivity in psychiatric disorders. JamaPsychiatry, 72, 743–744. 10.1001/jamapsychiatry.2015.0484
    1. Woodward, N. D. , Rogers, B. , & Heckers, S. (2011). Functional resting‐state networks are differentially affected in schizophrenia. Schizophrenia Research, 130, 86–93. 10.1016/j.schres.2011.03.010

Source: PubMed

3
S'abonner