Impact of hydration with beverages containing free sugars or xylitol on metabolic and acute kidney injury markers after physical exercise

Wojciech Wołyniec, Andrzej Szwarc, Katarzyna Kasprowicz, Katarzyna Zorena, Marta Jaskulak, Marcin Renke, Marta Naczyk, Wojciech Ratkowski, Wojciech Wołyniec, Andrzej Szwarc, Katarzyna Kasprowicz, Katarzyna Zorena, Marta Jaskulak, Marcin Renke, Marta Naczyk, Wojciech Ratkowski

Abstract

The proper fluid and carbohydrates intake is essential before and during physical exercise, and for this reason most athletes drink beverages containing a high amount of free sugars. Sweetened soft drinks are also commonly consumed by those not doing any sport, and this habit seems to be both unhealthy and also the cause of metabolic problems. Recently, several sweeteners have been proposed to replace sugars in popular beverages. To examine the impact of free sugars and the popular sweetener xylitol on metabolic profile and the markers of kidney function and injury after exercise the present study was conducted with semi-professional football players. All participants were healthy, with a mean age of 21.91 years. Their sports skills were on the level of the 4th-5th division of the league. The subjects took part in four football training sessions. During each session they drank a 7% solution of sugar (sucrose, fructose, glucose) or xylitol. The tolerability of these beverages and well-being during exercise was monitored. Before and after each training session, blood and urine were collected. The markers of kidney function and injury, uric acid, electrolytes, complete blood count, CRP, serum albumin, serum glucose and the lipid profile were analyzed. The main finding of this study was that the xylitol beverage is the least tolerated during exercise and 38.89% of participants experienced diarrhea after training and xylitol intake. Xylitol also led to unfavorable metabolic changes and a large increase in uric acid and creatinine levels. A mean increase of 1.8 mg/dl in the uric acid level was observed after xylitol intake. Increases in acute kidney injury markers were observed after all experiments, but changes in urine albumin and cystatin C were highest after xylitol. The other three beverages (containing "free sugars" - glucose, fructose and sucrose) had a similar impact on the variables studied, although the glucose solution seems to have some advantages over other beverages. The conclusion is that sweeteners are not a good alternative to sugars, especially during exercise. Pure water without sweeteners should be drunk by those who need to limit their calorie consumption. Clinical Trial Registration: ClinicalTrials.gov, (NCT04310514).

Keywords: acute kidney injury; hyperuricemia; hypohydration; physical exercise; polyols; soccer; sweetener.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wołyniec, Szwarc, Kasprowicz, Zorena, Jaskulak, Renke, Naczyk and Ratkowski.

References

    1. Argiana V., Kanellos P. Τ., Eleftheriadou I., Tsitsinakis G., Perrea D., Tentolouris N. K. (2020). Low-glycemic-index/load desserts decrease glycemic and insulinemic response in patients with type 2 diabetes mellitus. Nutrients 12 (7), 2153. 10.3390/nu12072153
    1. Armstrong L. E., Casa D. J., Millard-Stafford M., Moran D. S., Pyne S. W., Roberts W. O., et al. (2007). American College of Sports MedicineAmerican College of Sports Medicine position stand. Exertional heat illness during training and competition. Med. Sci. Sports Exerc. 39 (3), 556–572. 10.1249/MSS.0b013e31802fa199
    1. Ashwell M., Gibson S., Bellisle F., Buttriss J., Drewnowski A., Fantino M., et al. (2020). Expert consensus on low-calorie sweeteners: Facts, research gaps and suggested actions. Nutr. Res. Rev. 33 (1), 145–154. 10.1017/S0954422419000283
    1. Bibiloni M., Vidal-Garcia E., Carrasco M., Julibert A., Pons A., Tur Marí J. A. (2018). Hydration habits before, during and after training and competition days among amateur basketball players. Nutr. Hosp. 35 (3), 612–619. 10.20960/nh.1462
    1. Bratoeva K., Stoyanov G. S., Merdzhanova A., Radanova M. (2017). Manifestations of renal impairment in fructose-induced metabolic syndrome. Cureus 9 (11), e1826. 10.7759/cureus.1826
    1. Cao G., González J., Müller A., Ottaviano G., Ambrosio G., Toblli J. E., et al. (2016). Beneficial effect of moderate exercise in kidney of rat after chronic consumption of cola drinks. PloS one 11 (3), e0152461. 10.1371/journal.pone.0152461
    1. Coelho M., Monteyne A. J., Kamalanathan I. D., Najdanovic-Visak V., Finnigan T., Stephens F. B., et al. (2022). High dietary nucleotide consumption for one week increases circulating uric acid concentrations but does not compromise metabolic health: A randomised controlled trial. Clin. Nutr. ESPEN 49, 40–52. 10.1016/j.clnesp.2022.04.022
    1. Coelho M., Monteyne A. J., Kamalanathan I. D., Najdanovic-Visak V., Finnigan T., Stephens F. B., et al. (2020). Short-Communication: Ingestion of a nucleotide-rich mixed meal increases serum uric acid concentrations but does not affect postprandial blood glucose or serum insulin responses in young adults. Nutrients 12 (4), 1115. 10.3390/nu12041115
    1. Collins J., Maughan R. J., Gleeson M., Bilsborough J., Jeukendrup A., Morton J. P., et al. (2021). UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 55 (8), 416. 10.1136/bjsports-2019-101961
    1. Donnelly J. E., Blair S. N., Jakicic J. M., Manore M. M., Rankin J. W., Smith B. K., et al. (2009). American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 41 (2), 459–471. 10.1249/MSS.0b013e3181949333
    1. Dvorak J., Junge A. (2015). Twenty years of the FIFA medical assessment and research Centre: From ‘medicine for football’ to ‘football for health. Br. J. Sports Med. 49 (9), 561–563. 10.1136/bjsports-2015-094805
    1. Emerson S. R., Rosenkranz S. K., Rosenkranz R. R., Kurti S. P., Harms C. A. (2016). The potential link between sugar-sweetened beverage consumption and post-exercise airway narrowing across puberty: A longitudinal cohort study. Public Health Nutr. 19 (13), 2435–2440. 10.1017/S1368980015003109
    1. Förster H., Boecker S., Walther A. (1977). [Use of xylitol as sugar substitute in diabetic children]. Fortschr. Med. 95 (2), 99–102.
    1. Förster H., Quadbeck R., Gottstein U. (1982). Metabolic tolerance to high doses of oral xylitol in human volunteers not previously adapted to xylitol. Int. J. Vitam. Nutr. Res. Suppl. 22, 67–88.
    1. García-Arroyo F. E., Tapia E., Muñoz-Jiménez I., Gonzaga-Sánchez G., Arellano-Buendía A. S., Osorio-Alonso H., et al. (2020). Fluid intake restriction concomitant to sweetened beverages hydration induce kidney damage. Oxid. Med. Cell. Longev. 2020, 8850266. 10.1155/2020/8850266
    1. García-Berger D., Mackay K., Monsalves-Alvarez M., Jorquera C., Ramirez-Campillo R., Zbinden-Foncea H., et al. (2020). Effects of skim milk and isotonic drink consumption before exercise on fluid homeostasis and time-trial performance in cyclists: A randomized cross-over study. J. Int. Soc. Sports Nutr. 17 (1), 17. 10.1186/s12970-020-00346-9
    1. Gasmi Benahmed A., Gasmi A., Arshad M., Shanaida M., Lysiuk R., Peana M., et al. (2020). Health benefits of xylitol. Appl. Microbiol. Biotechnol. 104 (17), 7225–7237. 10.1007/s00253-020-10708-7
    1. Hahn K., Kanbay M., Lanaspa M. A., Johnson R. J., Ejaz A. A. (2017). Serum uric acid and acute kidney injury: A mini review. J. Adv. Res. 8 (5), 529–536. 10.1016/j.jare.2016.09.006
    1. Hamada T., Igawa O., Shigemasa C., Hisatome I. (2008). Nihon Rinsho. 66 (4), 723–727.
    1. Hoffman M. D., Weiss R. H. (2016). Does acute kidney injury from an ultramarathon increase the risk for greater subsequent injury? Clin. J. Sport Med. 26 (5), 417–422. 10.1097/JSM.0000000000000277
    1. Ibrahim O. (2018). Sweeteners in our diets and World health organization guidelines on free sugars intake. Int. J. Clin. Nutr. Diet. 4, 129. 10.15344/2456-8171/2018/129
    1. Johnson R. J., Perez-Pozo S. E., Lillo J. L., Grases F., Schold J. D., Kuwabara M., et al. (2018). Fructose increases risk for kidney stones: Potential role in metabolic syndrome and heat stress. BMC Nephrol. 19 (1), 315. 10.1186/s12882-018-1105-0
    1. Johnson R. J., Sanchez-Lozada L. G., Nakagawa T. (2010). The effect of fructose on renal biology and disease. J. Am. Soc. Nephrol. 21 (12), 2036–2039. 10.1681/ASN.2010050506
    1. Juett L. A., James L. J., Mears S. A. (2020). Effects of exercise on acute kidney injury biomarkers and the potential influence of fluid intake. Ann. Nutr. Metab. 76 (1), 53–59. 10.1159/000515022
    1. Juett L. A., Midwood K. L., Funnell M. P., James L. J., Mears S. A. (2021). Hypohydration produced by high-intensity intermittent running increases biomarkers of renal injury in males. Eur. J. Appl. Physiol. 121 (12), 3485–3497. 10.1007/s00421-021-04804-3
    1. Krisher L., Butler-Dawson J., Yoder H., Pilloni D., Dally M., Johnson E. C., et al. (2020). Electrolyte beverage intake to promote hydration and maintain kidney function in Guatemalan sugarcane workers laboring in hot conditions. J. Occup. Environ. Med. 62 (12), e696–e703. 10.1097/JOM.0000000000002033
    1. Lakicevic N., Paoli A., Roklicer R., Trivic T., Korovljev D., Ostojic S. M., et al. (2021). Effects of rapid weight loss on kidney function in combat sport athletes. Med. Kaunas. Lith. 57 (6), 551. 10.3390/medicina57060551
    1. Lee D. H., Rezende L., Joh H. K., Keum N., Ferrari G., Rey-Lopez J. P., et al. (2022). Long-term leisure-time physical activity intensity and all-cause and cause-specific mortality: A prospective cohort of us adults. Circulation 146 (7), 523–534. 10.1161/CIRCULATIONAHA.121.058162
    1. Livesey G. (2003). Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 16 (2), 163–191. 10.1079/NRR200371
    1. Marcos A., Manonelles P., Palacios N., Wärnberg J., Casajús J. A., Pérez M., et al. (2014). Physical activity, hydration and health. Nutr. Hosp. 29 (6), 1224–1239. 10.3305/nh.2014.29.6.7624
    1. Meyer-Gerspach A. C., Drewe J., Verbeure W., Roux C., Dellatorre-Teixeira L., Rehfeld J. F., et al. (2021). Effect of the natural sweetener xylitol on gut hormone secretion and gastric emptying in humans: A pilot dose-ranging study. Nutrients 13 (1), 174. 10.3390/nu13010174
    1. Millard-Stafford M., Snow T. K., Jones M. L., Suh H. (2021). The beverage hydration index: Influence of electrolytes, carbohydrate and protein. Nutrients 13 (9), 2933. 10.3390/nu13092933
    1. Orrù S., Imperlini E., Nigro E., Alfieri A., Cevenini A., Polito R., et al. (2018). Role of functional beverages on sport performance and recovery. Nutrients 10 (10), 1470. 10.3390/nu10101470
    1. Pedersen B. K., Saltin B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25 (3), 1–72. 10.1111/sms.12581
    1. Pennemans V., Rigo J. M., Faes C., Reynders C., Penders J., Swennen Q. (2013). Establishment of reference values for novel urinary biomarkers for renal damage in the healthy population: Are age and gender an issue? Clin. Chem. Lab. Med. 51 (9), 1795–1802. 10.1515/cclm-2013-0157
    1. Popkin B. M., Hawkes C. (2016). Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet. Diabetes Endocrinol. 4 (2), 174–186. 10.1016/S2213-8587(15)00419-2
    1. Poussel M., Touzé C., Allado E., Frimat L., Hily O., Thilly N., et al. (2020). Ultramarathon and renal function: Does exercise-induced acute kidney injury really exist in common conditions? Front. Sports Act. Living 1, 71. 10.3389/fspor.2019.00071
    1. Qurrat-ul-Ain, and Khan S. A. (2015). Artificial sweeteners: Safe or unsafe? J. Pak. Med. Assoc. 65 (2), 225–227.
    1. Reuters Agency (2021). Reuters. Available at: .
    1. Rollo I., Randell R. K., Baker L., Leyes J. Y., Medina Leal D., Lizarraga A., et al. (2021). Fluid balance, sweat Na+ losses, and carbohydrate intake of elite male soccer players in response to low and high training intensities in cool and hot environments. Nutrients 13 (2), 401. 10.3390/nu13020401
    1. Ruegsegger G. N., Booth F. W. (2018). Health benefits of exercise. Cold Spring Harb. Perspect. Med. 8 (7), a029694. 10.1101/cshperspect.a029694
    1. Russell M., Benton D., Kingsley M. (2012). Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J. Sci. Med. Sport 15 (4), 348–354. 10.1016/j.jsams.2011.12.006
    1. Sawka M. N., Burke L. M., Eichner E. R., Maughan R. J., Montain S. J., Stachenfeld N. S., et al. (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 39 (2), 377–390. 10.1249/mss.0b013e31802ca597
    1. Sawka M. N., Montain S. J. (2000). Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr. 72 (2), 564S–72S. 10.1093/ajcn/72.2.564S
    1. Scheer V., Tiller N. B., Doutreleau S., Khodaee M., Knechtle B., Pasternak A., et al. (2021). Potential long-term health problems associated with ultra-endurance running: A narrative review. Sports Med. 52, 725–740. 10.1007/s40279-021-01561-3
    1. Seo Y., Peacock C. A., Gunstad J., Burns K. J., Pollock B. S., Glickman E. L. (2014). Do glucose containing beverages play a role in thermoregulation, thermal sensation, and mood state? J. Int. Soc. Sports Nutr. 11, 24. 10.1186/1550-2783-11-24
    1. Singh G. M., Micha R., Khatibzadeh S., Lim S., Ezzati M., Mozaffarian D., et al. (2015). & global burden of diseases nutrition and chronic diseases expert group (NutriCoDE)Estimated global, regional, and national disease burdens related to sugar-sweetened beverage consumption in 2010. Circulation 132 (8), 639–666. 10.1161/CIRCULATIONAHA.114.010636
    1. Smeets P. A., Weijzen P., de Graaf C., Viergever M. A. (2011). Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage 54 (2), 1367–1374. 10.1016/j.neuroimage.2010.08.054
    1. Swan G. E., Powell N. A., Knowles B. L., Bush M. T., Levy L. B. (2018). A definition of free sugars for the UK. Public Health Nutr. 21 (9), 1636–1638. 10.1017/S136898001800085X
    1. Takayasu S., Kamba A., Yoshida K., Terui K., Watanuki Y., Ishigame N., et al. (2020). Secondary oxalosis induced by xylitol concurrent with lithium-induced nephrogenic diabetes insipidus: A case report. BMC Nephrol. 21 (1), 157. 10.1186/s12882-020-01814-9
    1. Wang Y. M., van Eys J. (1981). Nutritional significance of fructose and sugar alcohols. Annu. Rev. Nutr. 1, 437–475. 10.1146/annurev.nu.01.070181.002253
    1. Wolf A., Bray G. A., Popkin B. M. (2008). A short history of beverages and how our body treats them. Obes. Rev. 9 (2), 151–164. 10.1111/j.1467-789X.2007.00389.x
    1. Wołyniec W., Ratkowski W., Kasprowicz K., Jastrzębski Z., Małgorzewicz S., Witek K., et al. (2018). Glomerular filtration rate is unchanged by ultramarathon. J. Strength Cond. Res. 32 (11), 3207–3215. 10.1519/JSC.0000000000002348
    1. Zafar M. I., Frese M., Mills K. E. (2021). Chronic fructose substitution for glucose or sucrose in food or beverages and metabolic outcomes: An updated systematic review and meta-analysis. Front. Nutr. 8, 647600. 10.3389/fnut.2021.647600

Source: PubMed

3
S'abonner