Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis

Akifumi Kushiyama, Yusuke Nakatsu, Yasuka Matsunaga, Takeshi Yamamotoya, Keiichi Mori, Koji Ueda, Yuki Inoue, Hideyuki Sakoda, Midori Fujishiro, Hiraku Ono, Tomoichiro Asano, Akifumi Kushiyama, Yusuke Nakatsu, Yasuka Matsunaga, Takeshi Yamamotoya, Keiichi Mori, Koji Ueda, Yuki Inoue, Hideyuki Sakoda, Midori Fujishiro, Hiraku Ono, Tomoichiro Asano

Abstract

Uric acid (UA) is the end product of purine metabolism and can reportedly act as an antioxidant. However, recently, numerous clinical and basic research approaches have revealed close associations of hyperuricemia with several disorders, particularly those comprising the metabolic syndrome. In this review, we first outline the two molecular mechanisms underlying inflammation occurrence in relation to UA metabolism; one is inflammasome activation by UA crystallization and the other involves superoxide free radicals generated by xanthine oxidase (XO). Importantly, recent studies have demonstrated the therapeutic or preventive effects of XO inhibitors against atherosclerosis and nonalcoholic steatohepatitis, which were not previously considered to be related, at least not directly, to hyperuricemia. Such beneficial effects of XO inhibitors have been reported for other organs including the kidneys and the heart. Thus, a major portion of this review focuses on the relationships between UA metabolism and the development of atherosclerosis, nonalcoholic steatohepatitis, and related disorders. Although further studies are necessary, XO inhibitors are a potentially novel strategy for reducing the risk of many forms of organ failure characteristic of the metabolic syndrome.

Conflict of interest statement

The authors have no competing interests regarding the publication of this report to declare.

Figures

Figure 1
Figure 1
Metabolic pathways involving UA.
Figure 2
Figure 2
MUC induces inflammasome activation. MUC activates the NF-κB pathway through TLR2/4, thereby increasing the expressions of pro-IL-1β or pro-IL-18. At the same time, MUC induces ROS release from mitochondria. The generated ROS detaches TXNIP from thioredoxin and enables TXNIP to interact with the NLRP3 complex. The binding of TXNIP to NLRP3 activates inflammasomes, leading to the production of mature IL-1β or IL-18. MUC: monosodium urate crystals, TLR: Toll-like receptor, TXNIP: thioredoxin-interacting protein, TXR: thioredoxin, and ROS: reactive oxygen species.
Figure 3
Figure 3
Involvement of XO in molecular pathologies related to inflammation; “causes and results.”
Figure 4
Figure 4
Increased catalyst activity of XO, originating from pathological and physiological events. Involvement of XO in pathophysiological processes suggests applications of XO inhibitors to the treatment of various disorders.

References

    1. Berry C. E., Hare J. M. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. Journal of Physiology. 2004;555(3):589–606. doi: 10.1113/jphysiol.2003.055913.
    1. Ames B. N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences of the United States of America. 1981;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858.
    1. Santos C. X. C., Anjos E. I., Augusto O. Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Archives of Biochemistry and Biophysics. 1999;372(2):285–294. doi: 10.1006/abbi.1999.1491.
    1. Kamogawa E., Sueishi Y. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox. Bioorganic & Medicinal Chemistry Letters. 2014;24(5):1376–1379. doi: 10.1016/j.bmcl.2014.01.045.
    1. Gersch C., Palii S. P., Kim K. M., Angerhofer A., Johnson R. J., Henderson G. N. Inactivation of nitric oxide by uric acid. Nucleosides, Nucleotides and Nucleic Acids. 2008;27(8):967–978. doi: 10.1080/15257770802257952.
    1. Patterson R. A., Horsley E. T. M., Leake D. S. Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: important role of uric acid. Journal of Lipid Research. 2003;44(3):512–521. doi: 10.1194/jlr.m200407-jlr200.
    1. León-Carmona J. R., Galano A. Uric and 1-methyluric acids: metabolic wastes or antiradical protectors? Journal of Physical Chemistry B. 2011;115(51):15430–15438. doi: 10.1021/jp209776x.
    1. Davis J. W., Grandinetti A., Waslien C. I., Ross G. W., White L. R., Morens D. M. Observations on serum uric acid levels and the risk of idiopathic Parkinson's disease. American Journal of Epidemiology. 1996;144(5):480–484. doi: 10.1093/oxfordjournals.aje.a008954.
    1. Drulović J., Dujmović I., Stojsavljević N., et al. Uric acid levels in sera from patients with multiple sclerosis. Journal of Neurology. 2001;248(2):121–126. doi: 10.1007/s004150170246.
    1. Toncev G., Milicic B., Toncev S., Samardzic G. Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood-brain barrier dysfunction. European Journal of Neurology. 2002;9(3):221–226. doi: 10.1046/j.1468-1331.2002.00384.x.
    1. Liu B., Shen Y., Xiao K., Tang Y., Cen L., Wei J. Serum uric acid levels in patients with multiple sclerosis: a meta-analysis. Neurological Research. 2012;34(2):163–171. doi: 10.1179/1743132811y.0000000074.
    1. Ashtari F., Bahar M., Aghaei M., Zahed A. Serum uric acid level in patients with relapsing-remitting multiple sclerosis. Journal of Clinical Neuroscience. 2013;20(5):676–678. doi: 10.1016/j.jocn.2012.05.054.
    1. Keizman D., Ish-Shalom M., Berliner S., et al. Low uric acid levels in serum of patients with ALS: further evidence for oxidative stress? Journal of the Neurological Sciences. 2009;285(1-2):95–99. doi: 10.1016/j.jns.2009.06.002.
    1. Paganoni S., Zhang M., Zárate A. Q., et al. Uric acid levels predict survival in men with amyotrophic lateral sclerosis. Journal of Neurology. 2012;259(9):1923–1928. doi: 10.1007/s00415-012-6440-7.
    1. Martinon F., Burns K., Tschopp J. The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β . Molecular Cell. 2002;10(2):417–426. doi: 10.1016/s1097-2765(02)00599-3.
    1. Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832. doi: 10.1016/j.cell.2010.01.040.
    1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435. doi: 10.1038/nature07201.
    1. Martinon F., Pétrilli V., Mayor A., Tardivel A., Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241. doi: 10.1038/nature04516.
    1. Rock K. L., Kataoka H., Lai J.-J. Uric acid as a danger signal in gout and its comorbidities. Nature Reviews Rheumatology. 2013;9(1):13–23. doi: 10.1038/nrrheum.2012.143.
    1. Mills K. H. G., Dungan L. S., Jones S. A., Harris J. The role of inflammasome-derived IL-1 in driving IL-17 responses. Journal of Leukocyte Biology. 2013;93(4):489–497. doi: 10.1189/jlb.1012543.
    1. Duewell P. P., Kono H., Rayner K. J., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–1361.
    1. Razani B., Feng C., Coleman T., et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metabolism. 2012;15(4):534–544. doi: 10.1016/j.cmet.2012.02.011.
    1. Csak T., Ganz M., Pespisa J., Kodys K., Dolganiuc A., Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011;54(1):133–144. doi: 10.1002/hep.24341.
    1. Farrell G. C., Van Rooyen D., Gan L., Chitturi S. NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut and Liver. 2012;6(2):149–171. doi: 10.5009/gnl.2012.6.2.149.
    1. Gasse P., Riteau N., Charron S., et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. American Journal of Respiratory and Critical Care Medicine. 2009;179(10):903–913. doi: 10.1164/rccm.200808-1274OC.
    1. Pétrilli V., Papin S., Dostert C., Mayor A., Martinon F., Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation. 2007;14(9):1583–1589. doi: 10.1038/sj.cdd.4402195.
    1. Jhang J.-J., Cheng Y.-T., Ho C.-Y., Yen G.-C. Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells. Cellular & Molecular Immunology. 2015;12(4):424–434. doi: 10.1038/cmi.2014.65.
    1. Nomura J., So A., Tamura M., Busso N. Intracellular ATP decrease mediates NLRP3 inflammasome activation upon nigericin and crystal stimulation. The Journal of Immunology. 2015;195(12):5718–5724. doi: 10.4049/jimmunol.1402512.
    1. Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology. 2010;11(2):136–140. doi: 10.1038/ni.1831.
    1. Schroder K., Zhou R., Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010;327(5963):296–300. doi: 10.1126/science.1184003.
    1. Mittal A., Phillips A. R. J., Loveday B., Windsor J. A. The potential role for xanthine oxidase inhibition in major intra-abdominal surgery. World Journal of Surgery. 2008;32(2):288–295. doi: 10.1007/s00268-007-9336-4.
    1. Asai R., Nishino T., Matsumura T., et al. Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase. Journal of Biochemistry. 2007;141(4):525–534. doi: 10.1093/jb/mvm054.
    1. Papi A., Contoli M., Gasparini P., et al. Role of xanthine oxidase activation and reduced glutathione depletion in rhinovirus induction of inflammation in respiratory epithelial cells. Journal of Biological Chemistry. 2008;283(42):28595–28606. doi: 10.1074/jbc.M805766200.
    1. Barber M. J., Bray R. C., Cammack R., Coughlan M. P. Oxidation—reduction potentials of turkey liver xanthine dehydrogenase and the origins of oxidase and dehydrogenase behaviour in molybdenum-containing hydroxylases. Biochemical Journal. 1977;163(2):279–289. doi: 10.1042/bj1630279.
    1. Li H., Horke S., Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends in Pharmacological Sciences. 2013;34(6):313–319. doi: 10.1016/j.tips.2013.03.007.
    1. Herrera E. A., Kane A. D., Hansell J. A., et al. A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep. Journal of Physiology. 2012;590(8):1825–1837. doi: 10.1113/jphysiol.2011.224576.
    1. Kane A. D., Hansell J. A., Herrera E. A., et al. Xanthine oxidase and the fetal cardiovascular defence to hypoxia in late gestation ovine pregnancy. Journal of Physiology. 2014;592(3):475–489. doi: 10.1113/jphysiol.2013.264275.
    1. Ohtsubo T., Matsumura K., Sakagami K., et al. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension. 2009;54(4):868–876. doi: 10.1161/HYPERTENSIONAHA.109.135152.
    1. Pritsos C. A. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. Chemico-Biological Interactions. 2000;129(1-2):195–208. doi: 10.1016/S0009-2797(00)00203-9.
    1. Martin H. M., Moore K. P., Bosmans E., et al. Xanthine oxidoreductase is present in bile ducts of normal and cirrhotic liver. Free Radical Biology and Medicine. 2004;37(8):1214–1223. doi: 10.1016/j.freeradbiomed.2004.06.045.
    1. Wang X., Oberleas D., Yang M. T., Yang S. P. Molybdenum requirement of female rats. Journal of Nutrition. 1992;122(4):1036–1041.
    1. Moriwaki Y., Yamamoto T., Suda M., et al. Purification and immunohistochemical tissue localization of human xanthine oxidase. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology. 1993;1164(3):327–330. doi: 10.1016/0167-4838(93)90266-t.
    1. De Jong J. W., Schoemaker R. G., De Jonge R., et al. Enhanced expression and activity of xanthine oxidoreductase in the failing heart. Journal of Molecular and Cellular Cardiology. 2000;32(11):2083–2089. doi: 10.1006/jmcc.2000.1240.
    1. Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. Journal of Clinical Investigation. 1993;91(6):2546–2551. doi: 10.1172/JCI116491.
    1. Spiekermann S., Landmesser U., Dikalov S., et al. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation. 2003;107(10):1383–1389. doi: 10.1161/01.cir.0000056762.69302.46.
    1. Yang C.-C., Ma M.-C., Chien C.-T., Wu M.-S., Sun W.-K., Chen C.-F. Hypoxic preconditioning attenuates lipopolysaccharide-induced oxidative stress in rat kidneys. The Journal of Physiology. 2007;582(1):407–419. doi: 10.1113/jphysiol.2006.122747.
    1. Landmesser U., Spiekermann S., Preuss C., et al. Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007;27(4):943–948. doi: 10.1161/.
    1. Nicholas S. A., Bubnov V. V., Yasinska I. M., Sumbayev V. V. Involvement of xanthine oxidase and hypoxia-inducible factor 1 in Toll-like receptor 7/8-mediated activation of caspase 1 and interleukin-1β . Cellular and Molecular Life Sciences. 2011;68(1):151–158. doi: 10.1007/s00018-010-0450-3.
    1. Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Archiv—European Journal of Physiology. 2010;459(6):923–939. doi: 10.1007/s00424-010-0808-2.
    1. White C. R., Darley-Usmar V., Berrington W. R., et al. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(16):8745–8749. doi: 10.1073/pnas.93.16.8745.
    1. Elmas O., Elmas O., Caliskan S. Investigation of the oxidative effect of chronic hyperammonemia on the kidney and the possible protective effect of allopurinol. Renal Failure. 2011;33(1):61–65. doi: 10.3109/0886022X.2010.536606.
    1. Faruk Hossain M., Ismail M., Tanu A. R., Uddin Shekhar H. Respiratory burst enzymes, pro-oxidants and antioxidants status in bangladeshi population with β-thalassemia major. North American Journal of Medical Sciences. 2015;7(6):253–258. doi: 10.4103/1947-2714.159329.
    1. Chen G., Yang J., Lu G., Guo J., Dou Y. Limb remote ischemic post-conditioning reduces brain reperfusion injury by reversing eNOS uncoupling. Indian Journal of Experimental Biology. 2014;52(6):597–605.
    1. Gabrielli L. A., Castro P. F., Godoy I., et al. Systemic oxidative stress and endothelial dysfunction is associated with an attenuated acute vascular response to inhaled prostanoid in pulmonary artery hypertension patients. Journal of Cardiac Failure. 2011;17(12):1012–1017. doi: 10.1016/j.cardfail.2011.08.008.
    1. Aranda R., Doménech E., Rus A. D., et al. Age-related increase in xanthine oxidase activity in human plasma and rat tissues. Free Radical Research. 2007;41(11):1195–1200. doi: 10.1080/10715760701481461.
    1. Aliciguzel Y., Ozen I., Aslan M., Karayalcin U. Activities of xanthine oxidoreductose and antioxidant enzymes in different tissues of diabetic rats. The Journal of Laboratory and Clinical Medicine. 2003;142(3):172–177. doi: 10.1016/s0022-2143(03)00110-0.
    1. Malardé L., Rebillard A., Le Douairon-Lahaye S., et al. Superoxide production pathways in aortas of diabetic rats: beneficial effects of insulin therapy and endurance training. Molecular and Cellular Biochemistry. 2014;389(1-2):113–118. doi: 10.1007/s11010-013-1932-z.
    1. Peterson D. A., Asinger R. W., Elsperger K. J., Homans D. C., Eaton J. W. Reactive oxygen species may cause myocardial reperfusion injury. Biochemical and Biophysical Research Communications. 1985;127(1):87–93. doi: 10.1016/S0006-291X(85)80129-7.
    1. Ono T., Tsuruta R., Fujita M., et al. Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion. Brain Research. 2009;1305:158–167. doi: 10.1016/j.brainres.2009.09.061.
    1. Portugal-Cohen M., Kohen R. Exposure of human keratinocytes to ischemia, hyperglycemia and their combination induces oxidative stress via the enzymes inducible nitric oxide synthase and xanthine oxidase. Journal of Dermatological Science. 2009;55(2):82–90. doi: 10.1016/j.jdermsci.2009.05.006.
    1. Taha M. O., Simões M. J., Noguerol E. C., et al. Effects of allopurinol on ischemia and reperfusion in rabbit livers. Transplantation Proceedings. 2009;41(3):820–823. doi: 10.1016/j.transproceed.2009.02.051.
    1. Peglow S., Toledo A. H., Anaya-Prado R., Lopez-Neblina F., Toledo-Pereyra L. H. Allopurinol and xanthine oxidase inhibition in liver ischemia reperfusion. Journal of Hepato-Biliary-Pancreatic Sciences. 2011;18(2):137–146. doi: 10.1007/s00534-010-0328-7.
    1. Yoshikawa T., Ueda S., Naito Y., et al. Role of oxygen-derived free radicals in gastric mucosal injury induced by ischemia or ischemia-reperfusion in rats. Free Radical Research Communications. 1989;7(3–7):285–291.
    1. Vega V. L., Mardones L., Maldonado M., et al. Xanthine oxidase released from reperfused hind limbs mediate Küpffer cell activation, neutrophil sequestration, and hepatic oxidative stress in rats subjected to tourniquet shock. Shock. 2000;14(5):565–571. doi: 10.1097/00024382-200014050-00012.
    1. Vaghasiya J. D., Sheth N. R., Bhalodia Y. S., Jivani N. P. Exaggerated liver injury induced by renal ischemia reperfusion in diabetes: effect of exenatide. Saudi Journal of Gastroenterology. 2010;16(3):174–180. doi: 10.4103/1319-3767.65187.
    1. Hallfrisch J. Metabolic effects of dietary fructose. The FASEB Journal. 1990;4(9):2652–2660.
    1. Stirpe F., Della Corte E., Bonetti E., Abbondanza A., Abbati A., De Stefano F. Fructose-induced hyperuricaemia. The Lancet. 1970;296(7686):1310–1311. doi: 10.1016/s0140-6736(70)92269-5.
    1. Lanaspa M. A., Sanchez-Lozada L. G., Cicerchi C., et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLOS ONE. 2012;7(10) doi: 10.1371/journal.pone.0047948.e47948
    1. Roe T. F., Kogut M. D. The pathogenesis of hyperuricemia in glycogen storage disease, type I. Pediatric Research. 1977;11(5):664–669. doi: 10.1203/00006450-197705000-00008.
    1. Medvedeva N. B., Telushkin P. L., Stel'makh A. Y. Parameters of nitrogen metabolism during insulin hypoglycemia in rats with alloxan-induced diabetes. Bulletin of Experimental Biology and Medicine. 2008;146(2):203–205. doi: 10.1007/s10517-008-0251-y.
    1. Sachdev S., Davies K. J. A. Production, detection, and adaptive responses to free radicals in exercise. Free Radical Biology and Medicine. 2008;44(2):215–223. doi: 10.1016/j.freeradbiomed.2007.07.019.
    1. Vincent M. F., Van den Berghe G., Hers H. G. The pathway of adenine nucleotide catabolism and its control in isolated rat hepatocytes subjected to anoxia. Biochemical Journal. 1982;202(1):117–123. doi: 10.1042/bj2020117.
    1. Biri H., Öztürk H. S., Kaçmaz M., Karaca K., Tokuçoğlu H., Durak I. Activities of DNA turnover and free radical metabolizing enzymes in cancerous human prostate tissue. Cancer Investigation. 1999;17(5):314–319. doi: 10.3109/07357909909032872.
    1. Kishimoto K., Kobayashi R., Ichikawa M., et al. Risk factors for tumor lysis syndrome in childhood acute myeloid leukemia treated with a uniform protocol without rasburicase prophylaxis. Leukemia & Lymphoma. 2015;56(7):2193–2195. doi: 10.3109/10428194.2014.991923.
    1. Kushiyama A., Okubo H., Sakoda H., et al. Xanthine oxidoreductase is involved in macrophage foam cell formation and atherosclerosis development. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(2):291–298. doi: 10.1161/ATVBAHA.111.234559.
    1. Ohtsubo T., Rovira I. I., Starost M. F., Liu C., Finkel T. Xanthine oxidoreductase is an endogenous regulator of cyclooxygenase-2. Circulation Research. 2004;95(11):1118–1124. doi: 10.1161/01.RES.0000149571.96304.36.
    1. Vorbach C., Harrison R., Capecchi M. R. Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends in Immunology. 2003;24(9):512–517. doi: 10.1016/S1471-4906(03)00237-0.
    1. Hartney T., Birari R., Venkataraman S., et al. Xanthine oxidase-derived ROS upregulate Egr-1 via ERK1/2 in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0027531.e27531
    1. Gibbings S., Elkins N. D., Fitzgerald H., et al. Xanthine oxidoreductase promotes the inflammatory state of mononuclear phagocytes through effects on chemokine expression, peroxisome proliferator-activated receptor-γ sumoylation, and HIF-1α . Journal of Biological Chemistry. 2011;286(2):961–975. doi: 10.1074/jbc.M110.150847.
    1. Morse E., Schroth J., You Y.-H., et al. TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. American Journal of Physiology—Renal Physiology. 2010;299(5):F965–F972. doi: 10.1152/ajprenal.00236.2010.
    1. Corry D. B., Eslami P., Yamamoto K., Nyby M. D., Makino H., Tuck M. L. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. Journal of Hypertension. 2008;26(2):269–275. doi: 10.1097/HJH.0b013e3282f240bf.
    1. Kosugi T., Nakayama T., Heinig M., et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. American Journal of Physiology—Renal Physiology. 2009;297(2):F481–F488. doi: 10.1152/ajprenal.00092.2009.
    1. Ryu E.-S., Kim M. J., Shin H.-S., et al. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. American Journal of Physiology—Renal Physiology. 2013;304(5):F471–F480. doi: 10.1152/ajprenal.00560.2012.
    1. Nomura J., Busso N., Ives A., et al. Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLOS ONE. 2013;8(9) doi: 10.1371/journal.pone.0075527.e75527
    1. Davis N. The cardiovascular and renal relations and manifestations of gout. JAMA. 1897;29:261–262.
    1. Feig D. I., Kang D.-H., Johnson R. J. Uric acid and cardiovascular risk. The New England Journal of Medicine. 2008;359(17):1811–1821. doi: 10.1056/nejmra0800885.
    1. Selby J. V., Friedman G. D., Quesenberry Jr C. P. Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. American Journal of Epidemiology. 1990;131(6):1017–1027.
    1. Hunt S. C., Stephenson S. H., Hopkins P. N., Williams R. R. Predictors of an increased risk of future hypertension in Utah. A screening analysis. Hypertension. 1991;17(6):969–976. doi: 10.1161/01.hyp.17.6.969.
    1. Feig D. I., Johnson R. J. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247–252. doi: 10.1161/01.HYP.0000085858.66548.59.
    1. Sundström J., Sullivan L., D'Agostino R. B., Levy D., Kannel W. B., Vasan R. S. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45(1):28–33. doi: 10.1161/01.HYP.0000150784.92944.9a.
    1. Perlstein T. S., Gumieniak O., Williams G. H., et al. Uric acid and the development of hypertension: The Normative Aging Study. Hypertension. 2006;48(6):1031–1036. doi: 10.1161/01.hyp.0000248752.08807.4c.
    1. Krishnan E., Kwoh C. K., Schumacher H. R., Kuller L. Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension. 2007;49(2):298–303. doi: 10.1161/01.HYP.0000254480.64564.b6.
    1. Forman J. P., Choi H., Curhan G. C. Uric acid and insulin sensitivity and risk of incident hypertension. Archives of Internal Medicine. 2009;169(2):155–162. doi: 10.1001/archinternmed.2008.521.
    1. Wang J., Qin T., Chen J., et al. Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS ONE. 2014;9(12) doi: 10.1371/journal.pone.0114259.e114259
    1. Volterrani M., Iellamo F., Sposato B., Romeo F. Uric acid lowering therapy in cardiovascular diseases. International Journal of Cardiology. 2016;213:20–22. doi: 10.1016/j.ijcard.2015.08.088.
    1. Perez-Pozo S. E., Schold J., Nakagawa T., Sánchez-Lozada L. G., Johnson R. J., Lillo J. L. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. International Journal of Obesity. 2010;34(3):454–461. doi: 10.1038/ijo.2009.259.
    1. Feig D. I., Soletsky B., Johnson R. J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. The Journal of the American Medical Association. 2008;300(8):924–932. doi: 10.1001/jama.300.8.924.
    1. Soletsky B., Feig D. I. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 2012;60(5):1148–1156. doi: 10.1161/HYPERTENSIONAHA.112.196980.
    1. Agarwal V., Hans N., Messerli F. H. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. Journal of Clinical Hypertension. 2013;15(6):435–442. doi: 10.1111/j.1751-7176.2012.00701.x.
    1. Mazzali M., Hughes J., Kim Y.-G., et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38(5):1101–1106. doi: 10.1161/hy1101.092839.
    1. Mazzali M., Kanellis J., Han L., et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. American Journal of Physiology—Renal Physiology. 2002;282(6):F991–F997. doi: 10.1152/ajprenal.00283.2001.
    1. Alderman M. H., Cohen H., Madhavan S., Kivlighn S. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension. 1999;34(1):144–150. doi: 10.1161/01.HYP.34.1.144.
    1. Verdecchia P., Schillaci G., Reboldi G., Santeusanio F., Porcellati C., Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension: The PIUMA study. Hypertension. 2000;36(6):1072–1078. doi: 10.1161/01.HYP.36.6.1072.
    1. Bos M. J., Koudstaal P. J., Hofman A., Witteman J. C. M., Breteler M. M. B. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam Study. Stroke. 2006;37(6):1503–1507. doi: 10.1161/01.str.0000221716.55088.d4.
    1. Choi H. K., Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894–900. doi: 10.1161/CIRCULATIONAHA.107.703389.
    1. Stack A. G., Hanley A., Casserly L. F., et al. Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013;106(7):647–658. doi: 10.1093/qjmed/hct083.
    1. Li M., Hu X., Fan Y., et al. Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Scientific Reports. 2016;6, article 19520 doi: 10.1038/srep19520.
    1. Grimaldi-Bensouda L., Alpérovitch A., Aubrun E., et al. Impact of allopurinol on risk of myocardial infarction. Annals of the Rheumatic Diseases. 2015;74(5):836–842. doi: 10.1136/annrheumdis-2012-202972.
    1. Noman A., Ang D. S., Ogston S., Lang C. C., Struthers A. D. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. The Lancet. 2010;375(9732):2161–2167. doi: 10.1016/S0140-6736(10)60391-1.
    1. George J., Carr E., Davies J., Belch J. J. F., Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114(23):2508–2516. doi: 10.1161/CIRCULATIONAHA.106.651117.
    1. Rajendra N. S., Ireland S., George J., Belch J. J. F., Lang C. C., Struthers A. D. Mechanistic insights into the therapeutic use of high-dose allopurinol in angina pectoris. Journal of the American College of Cardiology. 2011;58(8):820–828. doi: 10.1016/j.jacc.2010.12.052.
    1. Ogino K., Kato M., Furuse Y., et al. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circulation: Heart Failure. 2010;3(1):73–81. doi: 10.1161/circheartfailure.109.868604.
    1. Moriwaki Y., Yamamoto T., Suda M., et al. Purification and immunohistochemical tissue localization of human xanthine oxidase. Biochimica et Biophysica Acta. 1993;1164(3):327–330. doi: 10.1016/0167-4838(93)90266-t.
    1. Nomura J., Busso N., Ives A., et al. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Scientific Reports. 2014;4, article no. 4554 doi: 10.1038/srep04554.
    1. Cai H., Harrison D. G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation Research. 2000;87(10):840–844. doi: 10.1161/01.res.87.10.840.
    1. Moore K. J., Sheedy F. J., Fisher E. A. Macrophages in atherosclerosis: a dynamic balance. Nature Reviews Immunology. 2013;13(10):709–721. doi: 10.1038/nri3520.
    1. Duewell P., Kono H., Rayner K. J., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–1361. doi: 10.1038/nature08938.
    1. Mishima M., Hamada T., Maharani N., et al. Effects of Uric Acid on the NO Production of HUVECs and its Restoration by Urate Lowering Agents. Drug Research. 2016;66(05):270–274. doi: 10.1055/s-0035-1569405.
    1. Khosla U. M., Zharikov S., Finch J. L., et al. Hyperuricemia induces endothelial dysfunction. Kidney International. 2005;67(5):1739–1742. doi: 10.1111/j.1523-1755.2005.00273.x.
    1. Rao G. N., Corson M. A., Berk B. C. Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. The Journal of Biological Chemistry. 1991;266(13):8604–8608.
    1. Loomba R., Sanyal A. J. The global NAFLD epidemic. Nature Reviews Gastroenterology and Hepatology. 2013;10(11):686–690. doi: 10.1038/nrgastro.2013.171.
    1. Mittal S., El-Serag H. B. Epidemiology of hepatocellular carcinoma: consider the population. Journal of Clinical Gastroenterology. 2013;47(1):S2–S6. doi: 10.1097/mcg.0b013e3182872f29.
    1. Farrell G. C., Larter C. Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2):S99–S112. doi: 10.1002/hep.20973.
    1. Kleiner D. E., Brunt E. M., Van Natta M., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Nonalcoholic Steatohepatitis Clinical Research Network. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701.
    1. Matteoni C. A., Younossi Z. M., Gramlich T., Boparai N., Yao Chang Liu, McCullough A. J. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–1419. doi: 10.1016/s0016-5085(99)70506-8.
    1. Browning J. D., Horton J. D. Molecular mediators of hepatic steatosis and liver injury. Journal of Clinical Investigation. 2004;114(2):147–152. doi: 10.1172/JCI200422422.
    1. Lim J. S., Mietus-Snyder M., Valente A., Schwarz J.-M., Lustig R. H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews Gastroenterology and Hepatology. 2010;7(5):251–264. doi: 10.1038/nrgastro.2010.41.
    1. Lee J. W., Cho Y. K., Ryan M. C., et al. Serum uric acid as a predictor for the development of nonalcoholic fatty liver disease in apparently healthy subjects: A 5-Year Retrospective Cohort Study. Gut and Liver. 2010;4(3):378–383. doi: 10.5009/gnl.2010.4.3.378.
    1. Li Y., Xu C., Yu C., Xu L., Miao M. Association of serum uric acid level with non-alcoholic fatty liver disease: a cross-sectional study. Journal of Hepatology. 2009;50(5):1029–1034. doi: 10.1016/j.jhep.2008.11.021.
    1. Petta S., Cammà C., Cabibi D., Di Marco V., Craxì A. Hyperuricemia is associated with histological liver damage in patients with non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics. 2011;34(7):757–766. doi: 10.1111/j.1365-2036.2011.04788.x.
    1. Sertoglu E., Ercin C. N., Celebi G., et al. The relationship of serum uric acid with non-alcoholic fatty liver disease. Clinical Biochemistry. 2014;47(6):383–388. doi: 10.1016/j.clinbiochem.2014.01.029.
    1. Lerret S. M., Garcia-Rodriguez L., Skelton J., Biank V., Kilway D., Telega G. Predictors of nonalcoholic steatohepatitis in obese children. Gastroenterology Nursing. 2011;34(6):434–437. doi: 10.1097/SGA.0b013e3182371356.
    1. Xu C., Wan X., Xu L., et al. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: one stone hits two birds. Journal of Hepatology. 2015;62(6, article 5522):1412–1419. doi: 10.1016/j.jhep.2015.01.019.
    1. Nakatsu Y., Seno Y., Kushiyama A., et al. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2015;309(1):G42–G51. doi: 10.1152/ajpgi.00443.2014.
    1. Tsushima Y., Nishizawa H., Tochino Y., et al. Uric acid secretion from adipose tissue and its increase in obesity. Journal of Biological Chemistry. 2013;288(38):27138–27149. doi: 10.1074/jbc.M113.485094.
    1. Lanaspa M. A., Sanchez-Lozada L. G., Choi Y.-J., et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. Journal of Biological Chemistry. 2012;287(48):40732–40744. doi: 10.1074/jbc.m112.399899.
    1. Choi Y.-J., Shin H.-S., Choi H. S., et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Laboratory Investigation. 2014;94(10):1114–1125. doi: 10.1038/labinvest.2014.98.
    1. Sautin Y. Y., Nakagawa T., Zharikov S., Johnson R. J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. American Journal of Physiology—Cell Physiology. 2007;293(2):C584–C596. doi: 10.1152/ajpcell.00600.2006.
    1. Baldwin W., McRae S., Marek G., et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60(4):1258–1269. doi: 10.2337/db10-0916.
    1. Henao-Mejia J., Elinav E., Jin C., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–185. doi: 10.1038/nature10809.
    1. Wree A., McGeough M. D., Peña C. A., et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. Journal of Molecular Medicine. 2014;92(10):1069–1082. doi: 10.1007/s00109-014-1170-1.
    1. Dixon L. J., Flask C. A., Papouchado B. G., Feldstein A. E., Nagy L. E. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0056100.e56100
    1. Matsuzaka T., Atsumi A., Matsumori R., et al. Elovl6 promotes nonalcoholic steatohepatitis. Hepatology. 2012;56(6):2199–2208. doi: 10.1002/hep.25932.
    1. Miura K., Yang L., van Rooijen N., Brenner D. A., Ohnishi H., Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57(2):577–589. doi: 10.1002/hep.26081.
    1. Bashiri A., Nesan D., Tavallaee G., et al. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids. 2016;1861(7):594–605. doi: 10.1016/j.bbalip.2016.04.005.
    1. Rathmann W., Funkhouser E., Dyer A. R., Roseman J. M. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Annals of Epidemiology. 1998;8(4):250–261. doi: 10.1016/s1047-2797(97)00204-4.
    1. Facchini F., Chen Y.-D. I., Hollenbeck C. B., Reaven G. M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. Journal of the American Medical Association. 1991;266(21):3008–3011. doi: 10.1001/jama.266.21.3008.
    1. Tae W. Y., Ki C. S., Hun S. S., et al. Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circulation Journal. 2005;69(8):928–933. doi: 10.1253/circj.69.928.
    1. Ford E. S., Li C., Cook S., Choi H. K. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation. 2007;115(19):2526–2532. doi: 10.1161/CIRCULATIONAHA.106.657627.
    1. Keenan T., Blaha M. J., Nasir K., et al. Relation of uric acid to serum levels of high-sensitivity c-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis. American Journal of Cardiology. 2012;110(12):1787–1792. doi: 10.1016/j.amjcard.2012.08.012.
    1. Klein B. E. K., Klein R., Lee K. E. Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam. Diabetes Care. 2002;25(10):1790–1794. doi: 10.2337/diacare.25.10.1790.
    1. Yuan H., Yu C., Li X., et al. Serum uric acid levels and risk of metabolic syndrome: a dose-response meta-analysis of prospective studies. Journal of Clinical Endocrinology and Metabolism. 2015;100(11):4198–4207. doi: 10.1210/jc.2015-2527.
    1. Bhole V., Choi J. W. J., Woo Kim S., De Vera M., Choi H. Serum uric acid levels and the risk of type 2 diabetes: A Prospective Study. American Journal of Medicine. 2010;123(10):957–961. doi: 10.1016/j.amjmed.2010.03.027.
    1. Kodama S., Saito K., Yachi Y., et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32(9):1737–1742. doi: 10.2337/dc09-0288.
    1. Jia Z., Zhang X., Kang S., Wu Y. Serum uric acid levels and incidence of impaired fasting glucose and type 2 diabetes mellitus: a meta-analysis of cohort studies. Diabetes Research and Clinical Practice. 2013;101(1):88–96. doi: 10.1016/j.diabres.2013.03.026.
    1. Lv Q., Meng X.-F., He F.-F., et al. High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0056864.e56864
    1. Pfister R., Barnes D., Luben R., et al. No evidence for a causal link between uric acid and type 2 diabetes: a mendelian randomisation approach. Diabetologia. 2011;54(10):2561–2569. doi: 10.1007/s00125-011-2235-0.
    1. Sluijs I., Holmes M. V., van der Schouw Y. T., et al. A mendelian randomization study of circulating uric acid and type 2 diabetes. Diabetes. 2015;64(8):3028–3036. doi: 10.2337/db14-0742.
    1. Yiginer O., Ozcelik F., Inanc T., et al. Allopurinol improves endothelial function and reduces oxidant-inflammatory enzyme of myeloperoxidase in metabolic syndrome. Clinical Research in Cardiology. 2008;97(5):334–340. doi: 10.1007/s00392-007-0636-3.
    1. Fabbrini E., Serafini M., Baric I. C., Hazen S. L., Klein S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes. 2014;63(3):976–981. doi: 10.2337/db13-1396.
    1. van den Berghe G., Bronfman M., Vanneste R., Hers H. G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochemical Journal. 1977;162(3):601–609. doi: 10.1042/bj1620601.
    1. Cicerchi C., Li N., Kratzer J., et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB Journal. 2014;28(8):3339–3350. doi: 10.1096/fj.13-243634.
    1. Lanaspa M. A., Cicerchi C., Garcia G., et al. Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver. PLoS ONE. 2012;7(11) doi: 10.1371/journal.pone.0048801.e48801
    1. Choi Y.-J., Yoon Y., Lee K.-Y., et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB Journal. 2014;28(7):3197–3204. doi: 10.1096/fj.13-247148.
    1. Zhu Y., Hu Y., Huang T., et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochemical and Biophysical Research Communications. 2014;447(4):707–714. doi: 10.1016/j.bbrc.2014.04.080.
    1. Lee H.-J., Jeong K. H., Kim Y. G., et al. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model. American Journal of Nephrology. 2014;40(1):56–63. doi: 10.1159/000363421.
    1. Sánchez-Lozada L. G., Tapia E., Soto V., et al. Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia. Nephron—Physiology. 2008;108(4):69–78. doi: 10.1159/000127837.
    1. Omori H., Kawada N., Inoue K., et al. Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clinical and Experimental Nephrology. 2012;16(4):549–556. doi: 10.1007/s10157-012-0609-3.
    1. Tsuda H., Kawada N., Kaimori J.-Y., et al. Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochemical and Biophysical Research Communications. 2012;427(2):266–272. doi: 10.1016/j.bbrc.2012.09.032.
    1. Tanaka K., Hara S., Kushiyama A., et al. Risk of macrovascular disease stratified by stage of chronic kidney disease in type 2 diabetic patients: critical level of the estimated glomerular filtration rate and the significance of hyperuricemia. Clinical and Experimental Nephrology. 2011;15(3):391–397. doi: 10.1007/s10157-011-0420-6.
    1. Tanaka K., Hara S., Hattori M., et al. Role of elevated serum uric acid levels at the onset of overt nephropathy in the risk for renal function decline in patients with type 2 diabetes. Journal of Diabetes Investigation. 2015;6(1):98–104. doi: 10.1111/jdi.12243.
    1. Tanaka K., Nakayama M., Kanno M., et al. Renoprotective effects of febuxostat in hyperuricemic patients with chronic kidney disease: a parallel-group, randomized, controlled trial. Clinical and Experimental Nephrology. 2015;19(6):1044–1053. doi: 10.1007/s10157-015-1095-1.
    1. Kato S., Ando M., Mizukoshi T., et al. Randomized control trial for the assessment of the anti-albuminuric effects of topiroxostat in hyperuricemic patients with diabetic nephropathy (the ETUDE study) Nagoya Journal of Medical Science. 2016;78(2):135–142.
    1. Sánchez-Lozada L. G., Tapia E., Bautista-García P., et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. American Journal of Physiology—Renal Physiology. 2008;294(4):F710–F718. doi: 10.1152/ajprenal.00454.2007.
    1. Xu C., Wan X., Xu L., et al. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: one stone hits two birds. Journal of Hepatology. 2015;62(6):1412–1419. doi: 10.1016/j.jhep.2015.01.019.
    1. Schröder K., Vecchione C., Jung O., et al. Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet. Free Radical Biology and Medicine. 2006;41(9):1353–1360. doi: 10.1016/j.freeradbiomed.2006.03.026.
    1. Soucy K. G., Lim H. K., Attarzadeh D. O., et al. Dietary inhibition of xanthine oxidase attenuates radiation-induced endothelial dysfunction in rat aorta. Journal of Applied Physiology. 2010;108(5):1250–1258. doi: 10.1152/japplphysiol.00946.2009.
    1. Jankov R. P., Kantores C., Pan J., Belik J. Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2008;294(2):L233–L245. doi: 10.1152/ajplung.00166.2007.
    1. Shafik A. N. Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats. Digestive Diseases and Sciences. 2013;58(3):650–659. doi: 10.1007/s10620-012-2391-1.
    1. Patt A., harken A. H., Burton L. K., et al. Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. The Journal of Clinical Investigation. 1988;81(5):1556–1562. doi: 10.1172/jci113488.
    1. Kumar A., Bhawani G., Kumari N., Murthy K. S. N., Lalwani V., Raju C. N. Comparative study of renal protective effects of allopurinol and n-acetyl-cysteine on contrast induced nephropathy in patients undergoing cardiac catheterization. Journal of Clinical and Diagnostic Research. 2014;8(12):HC03–HC07. doi: 10.7860/JCDR/2014/9638.5255.
    1. Wang S., Li Y., Song X., et al. Febuxostat pretreatment attenuates myocardial ischemia/reperfusion injury via mitochondrial apoptosis. Journal of Translational Medicine. 2015;13(1, article 209) doi: 10.1186/s12967-015-0578-x.
    1. Duda M., Konior A., Klemenska E., Beresewicz A. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. Journal of Molecular and Cellular Cardiology. 2007;42(2):400–410. doi: 10.1016/j.yjmcc.2006.10.014.

Source: PubMed

3
S'abonner