Respiratory Muscle Training Can Improve Cognition, Lung Function, and Diaphragmatic Thickness Fraction in Male and Non-Obese Patients with Chronic Obstructive Pulmonary Disease: A Prospective Study

Yuan-Yang Cheng, Shih-Yi Lin, Chiann-Yi Hsu, Pin-Kuei Fu, Yuan-Yang Cheng, Shih-Yi Lin, Chiann-Yi Hsu, Pin-Kuei Fu

Abstract

Patients with chronic obstructive pulmonary disease (COPD) are frequently comorbid with mild cognitive impairment (MCI). Whether respiratory muscle training (RMT) is helpful for patients with COPD comorbid MCI remains unclear. Inspiratory muscle training (IMT) with or without expiratory muscle training (EMT) was performed. Patients were randomly assigned to the full training group (EMT + IMT) or the simple training group (IMT only). A total of 49 patients completed the eight-week course of RMT training. RMT significantly improved the maximal inspiratory pressure (MIP), the diaphragmatic thickness fraction and excursion, lung function, scores in the COPD assessment test (CAT), modified Medical Research Council (mMRC) scale scores, and MMSE. The between-group difference in the full training and single training group was not significant. Subgroup analysis classified by the forced expiratory volume in one second (FEV1) level of patients showed no significant differences in MIP, lung function, cognitive function, and walking distance. However, a significant increase in diaphragmatic thickness was found in patients with FEV1 ≥ 30%. We suggest that patients with COPD should start RMT earlier in their disease course to improve physical activity.

Keywords: COPD; FEV1; cognitive impairment; diaphragmatic thickness fraction; expiratory muscle training; inspiratory muscle training; respiratory muscle training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Participant recruitment flowchart: BMI: body mass index; CPET: cardiopulmonary exercise test; IMT: inspiratory muscle training; EMT: expiratory muscle training; 6MWT: six-minute walking test.
Figure 2
Figure 2
Ultrasonographic evaluation of diaphragm. (A) Diaphragmatic thickness was measured below the intercostal muscles between the ribs. +: Markers of the anterior and posterior edges of diaphragm. (B) Amount of diaphragmatic excursion was measured using the M mode to trace the movement of the posterior edge of liver. +: Markers of the posterior edge of liver during respiration.
Figure 3
Figure 3
Difference of diaphragmatic thickness fraction before and after RMT. * p < 0.05.

References

    1. Rabe K.F., Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389:1931–1940. doi: 10.1016/S0140-6736(17)31222-9.
    1. Ruvuna L., Sood A. Epidemiology of Chronic Obstructive Pulmonary Disease. Clin. Chest Med. 2020;41:315–327. doi: 10.1016/j.ccm.2020.05.002.
    1. McCarthy B., Casey D., Devane D., Murphy K., Murphy E., Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2015;2:CD003793. doi: 10.1002/14651858.CD003793.pub3.
    1. Beaumont M., Forget P., Couturaud F., Reychler G. Effects of inspiratory muscle training in COPD patients: A systematic review and meta-analysis. Clin. Respir. J. 2018;12:2178–2188. doi: 10.1111/crj.12905.
    1. Hill K., Cecins N.M., Eastwood P.R., Jenkins S.C. Inspiratory muscle training for patients with chronic obstructive pulmonary disease: A practical guide for clinicians. Arch. Phys. Med. Rehabil. 2010;91:1466–1470. doi: 10.1016/j.apmr.2010.06.010.
    1. Frangogiannis N.G., Dewald O., Xia Y., Ren G., Haudek S., Leucker T., Kraemer D., Taffet G., Rollins B.J., Entman M.L. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115:584–592. doi: 10.1161/CIRCULATIONAHA.106.646091.
    1. Chigira Y., Miyazaki I., Izumi M., Oda T. Effects of expiratory muscle training on the frail elderly’s respiratory function. J. Phys. Ther. Sci. 2018;30:286–288. doi: 10.1589/jpts.30.286.
    1. Kim J., Davenport P., Sapienza C. Effect of expiratory muscle strength training on elderly cough function. Arch. Gerontol. Geriatr. 2009;48:361–366. doi: 10.1016/j.archger.2008.03.006.
    1. Xu W., Li R., Guan L., Wang K., Hu Y., Xu L., Zhou L., Chen R., Chen X. Combination of inspiratory and expiratory muscle training in same respiratory cycle versus different cycles in COPD patients: A randomized trial. Respir. Res. 2018;19:225. doi: 10.1186/s12931-018-0917-6.
    1. Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., Gamst A., Holtzman D.M., Jagust W.J., Petersen R.C., et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008.
    1. Zaudig M. A new systematic method of measurement and diagnosis of “mild cognitive impairment” and dementia according to ICD-10 and DSM-III-R criteria. Int. Psychogeriatr. 1992;4((Suppl. S2)):203–219. doi: 10.1017/S1041610292001273.
    1. Kakkera K., Padala K.P., Kodali M., Padala P.R. Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia. Curr. Opin. Pulm. Med. 2018;24:173–178. doi: 10.1097/MCP.0000000000000458.
    1. Singh B., Mielke M.M., Parsaik A.K., Cha R.H., Roberts R.O., Scanlon P.D., Geda Y.E., Christianson T.J., Pankratz V.S., Petersen R.C. A prospective study of chronic obstructive pulmonary disease and the risk for mild cognitive impairment. JAMA Neurol. 2014;71:581–588. doi: 10.1001/jamaneurol.2014.94.
    1. Singh B., Parsaik A.K., Mielke M.M., Roberts R.O., Scanlon P.D., Geda Y.E., Pankratz V.S., Christianson T., Yawn B.P., Petersen R.C. Chronic obstructive pulmonary disease and association with mild cognitive impairment: The Mayo Clinic Study of Aging. Mayo Clin. Proc. 2013;88:1222–1230. doi: 10.1016/j.mayocp.2013.08.012.
    1. Ranzini L., Schiavi M., Pierobon A., Granata N., Giardini A. From Mild Cognitive Impairment (MCI) to Dementia in Chronic Obstructive Pulmonary Disease. Implications for Clinical Practice and Disease Management: A Mini-Review. Front. Psychol. 2020;11:337. doi: 10.3389/fpsyg.2020.00337.
    1. Anstey K.J., Windsor T.D., Jorm A.F., Christensen H., Rodgers B. Association of pulmonary function with cognitive performance in early, middle and late adulthood. Gerontology. 2004;50:230–234. doi: 10.1159/000078352.
    1. de la Torre J.C. Critical threshold cerebral hypoperfusion causes Alzheimer’s disease? Acta Neuropathol. 1999;98:1–8. doi: 10.1007/s004010051044.
    1. Koyama A., O’Brien J., Weuve J., Blacker D., Metti A.L., Yaffe K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2013;68:433–440. doi: 10.1093/gerona/gls187.
    1. Venturelli M., Scarsini R., Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. Am. J. Alzheimers Dis. Other Demen. 2011;26:381–388. doi: 10.1177/1533317511418956.
    1. Vreugdenhil A., Cannell J., Davies A., Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: A randomized controlled trial. Scand. J. Caring Sci. 2012;26:12–19. doi: 10.1111/j.1471-6712.2011.00895.x.
    1. Van de Winckel A., Feys H., De Weerdt W., Dom R. Cognitive and behavioural effects of music-based exercises in patients with dementia. Clin. Rehabil. 2004;18:253–260. doi: 10.1191/0269215504cr750oa.
    1. Ferreira L., Tanaka K., Santos-Galduroz R.F., Galduroz J.C. Respiratory training as strategy to prevent cognitive decline in aging: A randomized controlled trial. Clin. Interv. Aging. 2015;10:593–603. doi: 10.2147/CIA.S79560.
    1. Sarwal A., Walker F.O., Cartwright M.S. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve. 2013;47:319–329. doi: 10.1002/mus.23671.
    1. Epelman M., Navarro O.M., Daneman A., Miller S.F. M-mode sonography of diaphragmatic motion: Description of technique and experience in 278 pediatric patients. Pediatr. Radiol. 2005;35:661–667. doi: 10.1007/s00247-005-1433-7.
    1. Halpin D.M.G., Criner G.J., Papi A., Singh D., Anzueto A., Martinez F.J., Agusti A.A., Vogelmeier C.F. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2021;203:24–36. doi: 10.1164/rccm.202009-3533SO.
    1. Burkhardt R., Pankow W. The diagnosis of chronic obstructive pulmonary disease. Dtsch. Arztebl. Int. 2014;111:834–845. doi: 10.3238/arztebl.2014.0834. quiz 846.
    1. Rasekaba T., Lee A.L., Naughton M.T., Williams T.J., Holland A.E. The six-minute walk test: A useful metric for the cardiopulmonary patient. Intern. Med. J. 2009;39:495–501. doi: 10.1111/j.1445-5994.2008.01880.x.
    1. Chuang M.L. Combining Dynamic Hyperinflation with Dead Space Volume during Maximal Exercise in Patients with Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2020;9:1127. doi: 10.3390/jcm9041127.
    1. Boutou A.K., Zafeiridis A., Pitsiou G., Dipla K., Kioumis I., Stanopoulos I. Cardiopulmonary exercise testing in chronic obstructive pulmonary disease: An update on its clinical value and applications. Clin. Physiol. Funct. Imaging. 2020;40:197–206. doi: 10.1111/cpf.12627.
    1. Guazzi M., Arena R., Halle M., Piepoli M.F., Myers J., Lavie C.J. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation. 2016;133:e694–e711. doi: 10.1161/CIR.0000000000000406.
    1. Weiner P., Man A., Weiner M., Rabner M., Waizman J., Magadle R., Zamir D., Greiff Y. The effect of incentive spirometry and inspiratory muscle training on pulmonary function after lung resection. J. Thorac. Cardiovasc. Surg. 1997;113:552–557. doi: 10.1016/S0022-5223(97)70370-2.
    1. Abodonya A.M., Abdelbasset W.K., Awad E.A., Elalfy I.E., Salem H.A., Elsayed S.H. Inspiratory muscle training for recovered COVID-19 patients after weaning from mechanical ventilation: A pilot control clinical study. Medicine. 2021;100:e25339. doi: 10.1097/MD.0000000000025339.
    1. El-Deen H.A.B., Alanazi F.S., Ahmed K.T. Effects of inspiratory muscle training on pulmonary functions and muscle strength in sedentary hemodialysis patients. J. Phys. Ther. Sci. 2018;30:424–427. doi: 10.1589/jpts.30.424.
    1. Bostanci O., Mayda H., Yilmaz C., Kabadayi M., Yilmaz A.K., Ozdal M. Inspiratory muscle training improves pulmonary functions and respiratory muscle strength in healthy male smokers. Respir. Physiol. Neurobiol. 2019;264:28–32. doi: 10.1016/j.resp.2019.04.001.
    1. Aydogan Arslan S., Ugurlu K., Sakizli Erdal E., Keskin E.D., Demirguc A. Effects of Inspiratory Muscle Training on Respiratory Muscle Strength, Trunk Control, Balance and Functional Capacity in Stroke Patients: A single-blinded randomized controlled study. Top. Stroke Rehabil. 2022;29:40–48. doi: 10.1080/10749357.2020.1871282.
    1. Findley L.J., Barth J.T., Powers D.C., Wilhoit S.C., Boyd D.G., Suratt P.M. Cognitive impairment in patients with obstructive sleep apnea and associated hypoxemia. Chest. 1986;90:686–690. doi: 10.1378/chest.90.5.686.
    1. Areza-Fegyveres R., Kairalla R.A., Carvalho C.R.R., Nitrini R. Cognition and chronic hypoxia in pulmonary diseases. Dement. Neuropsychol. 2010;4:14–22. doi: 10.1590/S1980-57642010DN40100003.
    1. Weiner P., Magadle R., Beckerman M., Weiner M., Berar-Yanay N. Comparison of specific expiratory, inspiratory, and combined muscle training programs in COPD. Chest. 2003;124:1357–1364. doi: 10.1378/chest.124.4.1357.
    1. Weiner P., McConnell A. Respiratory muscle training in chronic obstructive pulmonary disease: Inspiratory, expiratory, or both? Curr. Opin. Pulm. Med. 2005;11:140–144. doi: 10.1097/01.mcp.0000152999.18959.8a.
    1. Chuang M.L., Hsieh B.Y., Lin I.F. Resting Dead Space Fraction as Related to Clinical Characteristics, Lung Function, and Gas Exchange in Male Patients with Chronic Obstructive Pulmonary Disease. Int. J. Gen. Med. 2021;14:169–177. doi: 10.2147/IJGM.S291555.
    1. Garcia S., Rocha M., Pinto P., Lopes A.M., Bárbara C. Inspiratory muscle training in COPD patients. Rev. Port. Pneumol. 2008;14:177–194. doi: 10.1016/S0873-2159(15)30229-4.
    1. Petrovic M., Reiter M., Zipko H., Pohl W., Wanke T. Effects of inspiratory muscle training on dynamic hyperinflation in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2012;7:797–805. doi: 10.2147/COPD.S23784.
    1. Hill K., Jenkins S.C., Philippe D.L., Cecins N., Shepherd K.L., Green D.J., Hillman D.R., Eastwood P.R. High-intensity inspiratory muscle training in COPD. Eur. Respir. J. 2006;27:1119–1128. doi: 10.1183/09031936.06.00105205.
    1. Beaumont M., Mialon P., Le Ber-Moy C., Lochon C., Peran L., Pichon R., Gut-Gobert C., Leroyer C., Morelot-Panzini C., Couturaud F. Inspiratory muscle training during pulmonary rehabilitation in chronic obstructive pulmonary disease: A randomized trial. Chron. Respir. Dis. 2015;12:305–312. doi: 10.1177/1479972315594625.
    1. Figueiredo R.I.N., Azambuja A.M., Cureau F.V., Sbruzzi G. Inspiratory Muscle Training in COPD. Respir. Care. 2020;65:1189–1201. doi: 10.4187/respcare.07098.
    1. Mitchell A.J. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J. Psychiatr. Res. 2009;43:411–431. doi: 10.1016/j.jpsychires.2008.04.014.

Source: PubMed

3
S'abonner