The altered gut microbiome and necrotizing enterocolitis

Roberto Murgas Torrazza, Josef Neu, Roberto Murgas Torrazza, Josef Neu

Abstract

Current evidence highlights the importance of developing a healthy intestinal microbiota in the neonate. Many aspects that promote health or disease are related to the homeostasis of these intestinal microbiota. Their delicate equilibrium could be strongly influenced by the intervention that physicians perform as part of the medical care of the neonate, especially preterm infants. As awareness of the importance of the development and maintenance of these intestinal flora increase and newer molecular techniques are developed, it will be possible to provide better care of infants with interventions that will have long-lasting effects.

Copyright © 2013 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Intestinal microbiota remain mostly uncultured by traditional culture-based methods. Black fills indicate phylotypes detected in cultivation-independent studies and white indicates species detected in cultivation-based studies.
Fig. 2
Fig. 2
Intestinal microbiota and the potential biologic functions and metabolites.
Fig. 3
Fig. 3
Factors influencing intestinal microbiota homeostasis and predisposing to NEC. The intestinal microbiota are in perfect equilibrium with bacteria that regulate and others that have the potential to cause inflammation. Disruption of this equilibrium (dysbiosis) for different factors leads to inflammation.
Fig. 4
Fig. 4
Simplified TLR signaling leading to NF-κB activation, inflammatory response, and possible NEC. Surface enterocytes can recognize MAMPs via TLRs. Each of these receptors recognizes a specific bacterial product. For example, TLR-2 recognizes products of gram-positive bacteria, TLR-4 recognizes LPS from gram-negative bacteria, and TLR-5 recognizes flagellin. Cell stimulation signals recruitment of MyD88, IRAK, and TRAF6, then triggers activation of IκB. NF-κB activates the transcription of genes, including cytokines and chemokines. IκB: inhibitor of kappa B.

References

    1. Obladen M. Necrotizing enterocolitis–150 years of fruitless search for the cause. Neonatology. 2009;96(4):203–210.
    1. Neu J., Walker W.A. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–264.
    1. Lin Patricia W., Stoll Barbara J. Necrotising enterocolitis. Lancet. 2006;368(9543):1271–1283.
    1. Young C.M., Kingma S.D., Neu J. Ischemia-reperfusion and neonatal intestinal injury. J Pediatr. 2011;158(2 Suppl):e25–e28.
    1. Claud E.C., Walker W.A. Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J. 2001;15(8):1398–1403.
    1. Sántulli T.V., Schullinger J.N., Heird W.C. Acute necrotizing enterocolitis in infancy: a review of 64 cases. Pediatrics. 1975;55(3):376–387.
    1. Falkow S. Molecular Koch's postulates applied to bacterial pathogenicity–a personal recollection 15 years later. Nat Rev Microbiol. 2004;2(1):67–72.
    1. Resta S., Luby J.P., Rosenfeld C.R. Isolation and propagation of a human enteric coronavirus. Science. 1985;229(4717):978–981.
    1. Neu J., Mshvildadze M., Mai V. A roadmap for understanding and preventing necrotizing enterocolitis. Curr Gastroenterol Rep. 2008;10(5):450–457.
    1. Grave G.D., Nelson S.A., Walker W.A. New therapies and preventive approaches for necrotizing enterocolitis: report of a research planning workshop. Pediatr Res. 2007;62(4):510–514.
    1. Ben-Amor K., Heilig H., Smidt H. Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol. 2005;71(8):4679–4689.
    1. Leblond-Bourget N., Philippe H., Mangin I. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol. 1996;46(1):102–111.
    1. Rondon M.R., August P.R., Bettermann A.D. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol. 2000;66(6):2541–2547.
    1. Venter J.C., Remington K., Heidelberg J.F. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304(5667):66–74.
    1. Turnbaugh P.J., Quince C., Faith J.J. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A. 2010;107(16):7503–7508.
    1. Gosalbes M.J., Durban A., Pignatelli M. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One. 2011;6(3):e17447.
    1. Zoetendal E.G., Raes J., van den Bogert B. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012;6(7):1415–1426.
    1. Booijink C.C., Boekhorst J., Zoetendal E.G. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol. 2010;76(16):5533–5540.
    1. Verberkmoes N.C., Russell A.L., Shah M. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3(2):179–189.
    1. Hooper L.V., Gordon J.I. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–1118.
    1. Forsythe P., Bienenstock J. Immunomodulation by commensal and probiotic bacteria. Immunol Invest. 2010;39(4–5):429–448.
    1. Wang Y., Hoenig J.D., Malin K.J. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J. 2009;3(8):944–954.
    1. Mai V., Young C.M., Ukhanova M. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS One. 2011;6(6):e20647.
    1. DiGiulio D.B., Gervasi M.T., Romero R. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J Perinat Med. 2010;38(5):495–502.
    1. Nanthakumar N.N., Fusunyan R.D., Sanderson I. Inflammation in the developing human intestine: a possible pathophysiologic contribution to necrotizing enterocolitis. Proc Natl Acad Sci U S A. 2000;97(11):6043–6048.
    1. Medzhitov R., Schneider D.S., Soares M.P. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–941.
    1. Harmsen H.J., Wildeboer-Veloo A.C., Raangs G.C. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30(1):61–67.
    1. Jernberg C., Lofmark S., Edlund C. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66.
    1. Gronlund M.M., Lehtonen O.P., Eerola E. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19–25.
    1. Neu J., Rushing J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis. Clin Perinatol. 2011;38(2):321–331.
    1. Dominguez-Bello M.G., Blaser M.J., Ley R.E. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology. 2011;140(6):1713–1719.
    1. Dominguez-Bello M.G., Costello E.K., Contreras M. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975.
    1. Sullivan S., Schanler R.J., Kim J.H. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156(4):562–567.e1.
    1. Barlow B., Santulli T.V., Heird W.C. An experimental study of acute neonatal enterocolitis–the importance of breast milk. J Pediatr Surg. 1974;9(5):587–595.
    1. Lucas A., Cole T.J. Breast milk and neonatal necrotising enterocolitis. Lancet. 1990;336(8730):1519–1523.
    1. Hanson L.A., Korotkova M., Telemo E. Breast-feeding, infant formulas, and the immune system. Ann Allergy Asthma Immunol. 2003;90(6 Suppl 3):59–63.
    1. Ward R.E., Ninonuevo M., Mills D.A. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72(6):4497–4499.
    1. Ninonuevo M.R., Park Y., Yin H. A strategy for annotating the human milk glycome. J Agric Food Chem. 2006;54(20):7471–7480.
    1. Adlerberth I., Lindberg E., Aberg N. Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res. 2006;59(1):96–101.
    1. Bjorkstrom M.V., Hall L., Soderlund S. Intestinal flora in very low-birth weight infants. Acta Paediatr. 2009;98(11):1762–1767.
    1. Le Huerou-Luron I., Blat S., Boudry G. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev. 2010;23(1):23–36.
    1. Penders J., Thijs C., Vink C. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–521.
    1. Section on Breastfeeding Breastfeeding and the use of human milk. Pediatrics. 2012;129(3):e827–e841.
    1. Kuppala V.S., Meinzen-Derr J., Morrow A.L. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr. 2011;159(5):720–725.
    1. Alexander V.N., Northrup V., Bizzarro M.J. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr. 2011;159(3):392–397.
    1. Weintraub A.S., Ferrara L., Deluca L. Antenatal antibiotic exposure in preterm infants with necrotizing enterocolitis. J Perinatol. 2012;32(9):705–709.
    1. Goldmann D.A., Leclair J., Macone A. Bacterial colonization of neonates admitted to an intensive care environment. J Pediatr. 1978;93(2):288–293.
    1. Jakobsson H.E., Jernberg C., Andersson A.F. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5(3):e9836.
    1. Cotten C.M., Taylor S., Stoll B. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123(1):58–66.
    1. Caplan M.S., MacKendrick W. Necrotizing enterocolitis: a review of pathogenetic mechanisms and implications for prevention. Pediatr Pathol. 1993;13(3):357–369.
    1. Caplan M.S., Sun X.M., Hseuh W. Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr. 1990;116(6):960–964.
    1. Edelson M.B., Bagwell C.E., Rozycki H.J. Circulating pro- and counterinflammatory cytokine levels and severity in necrotizing enterocolitis. Pediatrics. 1999;103(4 Pt 1):766–771.
    1. Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–323.
    1. Murgas Torrazza R., Neu J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol. 2011;31(Suppl 1):S29–S34.
    1. Rook G.A. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol. 2010;160(1):70–79.
    1. Macpherson A.J., Harris N.L. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–485.
    1. Coats S.R., Do C.T., Karimi-Naser L.M. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell Microbiol. 2007;9(5):1191–1202.
    1. Sansonetti P.J., Medzhitov R. Learning tolerance while fighting ignorance. Cell. 2009;138(3):416–420.
    1. Munford R.S., Varley A.W. Shield as signal: lipopolysaccharides and the evolution of immunity to gram-negative bacteria. PLoS Pathog. 2006;2(6):e67.
    1. Sharma R., Young C., Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010;2010:305879.
    1. Rhee S.H. Basic and translational understandings of microbial recognition by toll-like receptors in the intestine. J Neurogastroenterol Motil. 2011;17(1):28–34.
    1. Caplan M.S. Probiotic and prebiotic supplementation for the prevention of neonatal necrotizing enterocolitis. J Perinatol. 2009;29(Suppl 2):S2–S6.
    1. Tien M.T., Girardin S.E., Regnault B. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol. 2006;176(2):1228–1237.
    1. Otte J.M., Podolsky D.K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol. 2004;286(4):G613–G626.
    1. Lin H.C., Hsu C.H., Chen H.L. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics. 2008;122(4):693–700.
    1. Deshpande G., Rao S., Patole S. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics. 2010;125(5):921–930.
    1. Floch M.H., Walker W.A., Madsen K. Recommendations for probiotic use-2011 update. J Clin Gastroenterol. 2011;45(Suppl):S168–S171.
    1. Zhang L., Li N., Caicedo R. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-alpha-induced interleukin-8 production in Caco-2 cells. J Nutr. 2005;135(7):1752–1756.
    1. Zhang L., Li N., des Robert C. Lactobacillus rhamnosus GG decreases lipopolysaccharide-induced systemic inflammation in a gastrostomy-fed infant rat model. J Pediatr Gastroenterol Nutr. 2006;42(5):545–552.
    1. Sherman M.P. New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clin Perinatol. 2010;37(3):565–579.
    1. Hunter C.J., Upperman J.S., Ford H.R. Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC) Pediatr Res. 2008;63(2):117–123.
    1. Gatt M., Reddy B.S., MacFie J. Review article: bacterial translocation in the critically ill–evidence and methods of prevention. Aliment Pharmacol Ther. 2007;25(7):741–757.
    1. Anand R.J., Leaphart C.L., Mollen K.P. The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock. 2007;27(2):124–133.
    1. Cole C.R., Hansen N.I., Higgins R.D. Bloodstream infections in very low birth weight infants with intestinal failure. J Pediatr. 2012;160(1):54–59.e2.
    1. Guillet R., Stoll B.J., Cotten C.M. Association of H2-blocker therapy and higher incidence of necrotizing enterocolitis in very low birth weight infants. Pediatrics. 2006;117(2):e137–e142.
    1. Canani R.B., Terrin G. Gastric acidity inhibitors and the risk of intestinal infections. Curr Opin Gastroenterol. 2010;26(1):31–35.
    1. Carrion V., Egan E.A. Prevention of neonatal necrotizing enterocolitis. J Pediatr Gastroenterol Nutr. 1990;11(3):317–323.

Source: PubMed

3
S'abonner